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The evolution of an underwater robot in real conditions supposes the execution of spatial movements 
according to six degrees of freedom (elementary translation movements in the direction of the three axes of 
coordinates). Description of such movements supposes the relation to a system of axes, favourable for the 
movement analysis.   
The evolution of the submerged underwater robot will be observed in relation with the position equations, 
when this moves at low speed, in order to finally find an appropriate position for it at the work site.  
  
Chapter 1. INTRODUCTION  
Having in view the mission requirements and its operational needs, taking into account the 
present achievements in civil and military robotics, along with the role of underwater robots 
in contemporary man’s life, the present paper aims at presenting the position equations, in 
space, of the underwater robot vehicle (URV) cinematics.  
Practically, the starting point in the study of a URV cinematics is the propulsion system 
and the propeller positioning, so as the robot remain stable, not being dependant on 
propulsion. The robot is supposed to move safely (at low speeds), in vertical and 
horizontal planes, towards the intervention area, there follows the determination of the 
robot’s, or its arm’s movement towards the working site and back. The paper makes 
reference to the evolution of the submerged robot and calculates the position equations of 
the robot’s cinematic. 
Observing the behaviour of a self-ruling underwater robot in immersion, in lifelike 
conditions, and determination of position equations of the robot, all aim at stating the 
design and function properties, as well as efficiency growth and vitality of the robot.  
This paper intends to show how to state the position equations of the underwater robot’s 
cinematics, in space, while the robot is submerged on demand. We should have in view 
the safe vertical and horizontal movement of the robot, as well as an equilibrium control of 
the robot under continuous changing conditions of the environment in which the robot 
moves.  
The evolution of the submerged underwater robot will be observed in relation with the 
position equations, when this moves at low speed, in order to finally find an appropriate 
position for it at the work site. 

 
Chapter 2. THE EVOLUTION OF A SUBMERGED UNDERWATER CRAFT 
2.1 Generalities concerning 
Underwater robots are vehicles that operate at low speeds. i.e. 1÷ 4 Nd. 
To control or supervise the immersion means to maintain steady immersion quota of 
immersion, during the vertical and horizontal movement of the robot, for a certain extent of 
time. In order to maintain a proper steering one should study this operational parameters 
in their attempt to study and analyze the underwater robots’ cinematic.   
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Steering is the robot’s capacity to alter and maintain its ordered course when operated by 
rudders and propellers. Steering is influenced by a series of factors, some of which being 
related to the mini submarine, and others to outside factors. [3, pag.32-37].  
Thus, the factors that influence the underwater robot’s steering are:   
- related to the  robot, i.e. main dimensions, CG and CF,  positions, UR shape and rudders 
dimensions, propellers (place and location angle, dimensions and their number, propeller’s 
pitch), running speed, and direction; 
- external factors: wind direction and force, waves and their direction (wave characteristics 
in shallow waters), underwater currents and their direction, depth (when passing from 
deep waters to shallow waters the shape and endurance of the waves is changed).  
It is necessary to observe the action of the autonomous underwater vehicle (AUV) in 
immersion, in as similar to reality conditions as possible, so as not to affect the robot’s 
functioning in general and its vitality in particular.     
Anchoring, weighing anchor in immersion, immersion in constant depth between 
waterways, vertical downward running, non-operative position of the robot on the bottom of 
the sea, the uplift to a certain height, then travelling above bed sea at a constant height, 
avoiding obstacles in the way, are only a few essential aspects that create good reasons 
for calculating the vehicle’s position equations from the starting point to the work site.   

2.2 Notions about stability of underwater robots  
By stability of underwater robot we refer to a certain characteristic of the robot that helps to 
go back to the initial position even in the situation when the robot is no longer submerged, 
and the external cause that produced its inclination does not act on it any longer. Thus, 
stability is the equilibrium characteristic of the underwater robot.  
Depending on the size of the inclination angle we can distinguish: initial stability, stability at 
small inclination angles, and stability at wide inclination angles. 
Fundamental for the theory of initial stability is the hypothesis of very small inclinations, 
and the moment of getting to the initial position, has a laniary variation, depending on the 
inclination angle.  At big inclinations, the hypothesis of coming back to the initial position is 
no longer taken into account. [2, pg. 82] 
By static stability we refer to that property of the underwater robot of setting against 
external static acts, which tend to tilt it with a very small angular acceleration, which can be 
easily not taken into consideration. 
By dynamic stability we refer to that property of the underwater robot to set against the 
external dynamic acts, which carries out its full effect, producing an angular acceleration 
that should be taken into consideration.  
The inclination of the underwater vehicles around a longitudinal axis is called transverse 
inclination, which corresponds with transversal stability, while the inclination around a 
transverse axis is called longitudinal inclination, which in its turn corresponds with 
longitudinal stability.   

2.3 Determination of position equations 
The determination of position equations is necessary for the cinematic analysis of robots, 
according to which the positioning in sites or areas of intervention is calculated. In 
cinematics movement is considered independent of masses and forces; only the 
geometrical aspect is taken into account [2]. 
Among the problems that can be solved through the cinematic analysis of the robots, the 
most difficult, and most important is the one related to position of robots.  
The transformation matrices ri,i+1 and ri+1,i, dependent on the vectors of the two systems 
are: 
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It is observed that for the rectangular systems (systems used in this paper), the matrix ri+1,i 
is inverse in relation to matrix ri,i+1; consequently, it can be written: 

    ( ) ( )Tiiiiii rrr 1,
1

1,,1 +
−

++ ==                 (3) 
 

Matrix ri,i+1 characterizes the relative elementary rotation movement of elements i (in this 
case the depot ship) and i+1 (the underwater robot vehicle), and represents the 
transformation matrix of a point’s coordinates from the mobile system URV to the stable 
one (the depot ship). 
It is considered that the mobile system URV with an angle ά around the permanent system 
formed by the base ship. By convention, the counter clockwise direction is considered 
positive for the variation of the pitch angle θ, rolling angle ψ and swing angle ϕ. 
The base ship is the permanent element while the robot is the mobile element; the element 
“n” is solitary with the hand of the robot’s handler. Dependant on this, the permanent and 
the mobile systems of coordinates are selected. The symmetrical axes of the vehicle are 
taken into account, and dependant on the direction of the underwater robot, the sense of 
the Cartesian system axes of coordinates is selected.    
In order to “shape” the movement of the robot while this is at work underwater, we 
suppose that this consists of a successions of rigid solids interconnected through joints 
(usually they are joints with a single degree of freedom) [1, pg. 37]. 
We consider:  

To = the permanent reference system, solitary with the base ship; 
Ti = the mobile reference systems (all the other robot systems, manipulator arm, 

hand, etc.); 
Ri = matrix that characterizes the relative rotation movement.  

Usually, these reference systems are chosen in accordance with their origin which should 
be either in the centre of the joint of two, or in the elements, or in the load centre CG of the 
element the respective reference system is solitary with. [1] 
The relative matrix of two consecutive reference elements, in our case the base ship, and 
the URV, is described by the variation of a number of parameters (conventionally named-
generalized coordinates), which is equal to the number of degrees of freedom of the joint 
(in this case of the element), which interconnects the elements with which the respective 
reference system is solitary with. 
The derivatives of these coordinates in relation to time are the generalized speeds, while 
their derivatives in relation to time of the generalized speeds are the generalized 
accelerations. The generalized coordinates can be of rotation, materialized by angles φ, θ, 
ψ of two elements, or of translation, materialized in the linear drift (a, b ,c) of the two 
elements. 
A random rotation   can be obtain as a consequence of three successive rotations: one 
around axis X, with an angle ψ, another one around axis Y, with an angle θ, and a last one 
around axis Z, with an angle φ.   
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Fig. 1 Selection of the systems of coordinate axes of the underwater robot vehicle 
 
The permanent system of coordinate axes is attached to the base ship. 
The URV has a diametrical axial plane. The mobile system of axes, attached to the 
vehicle, uses the advantages of this axial plane, in the following way: two of the axes are 
selected in the axial plane and the other perpendicular on the plane. 
Axis Ox is selected as longitudinal in the axial plane, positive towards the robot’s bow (in 
onward direction), parallel with the surface of calm water. 
Axis Oy is selected as transverse in the axial plane of the robot, positive towards 
starboard, parallel with the surface of calm waters.  
Axis Oz is vertical in the axial plane of the robot, positive downwards.  

 
2.3.1 Determination of transformation matrix of the coordinate axis in space 
The relations can be extended to the particular rotations of the trirectangular systems 
around axes Ox, Oy, Oz, as follow: 

a) rotation around axis Ox: 
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b) rotation around axis Oy: 
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c) rotation around axis Oz:  
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In order to obtain the projections of point M on the axes of system Oxyz, for the particular 
rotations presented, knowing its projections on the axes of system Ox0y0z0 we have the 
relations: 

[ ] )()( 0
0 rRr T
x ⋅= α       (39) 

for rotation around axis Ox; 
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                         [ ] )()( 0
0 rRr T
y ⋅= β          (40) 

for rotation around Oy; 
                          [ ] )()( 0

0 rRr T
z ⋅= γ         (41) 

for rotation around axis Oz.  
Position and movement of vehicle, in relation to the fix Cartesian system Ox0y0z0, 
correspond to the position and movement of a robot Oxyz attached to the respective rigid 
frame. The six degrees of freedom of the robot will be determined by the position vector 
0ρ  of the origin O and by the position of mobile vectors i

r
, j
r

, and k
r

of axes Ox, Oy, and 
Oz (fig. 2) 

Position vector rr  of point M in relation to the mobile system represented by the 
underwater robot is: 

kzjyixr ++=                        (42)        
where:  
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Fig. 2 

Replacing previous relations, we obtain the following expression for vector 0r : 
033231303222120312111

0 )()()()( kzyxjzyxizyxr ααααααααα ++++++++= . (46) 
Projections of vector 0r  on the axes of the permanent system can be deduced by adding 
the corresponding dot products (α11 is practically cosα11):  
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where:  
)()( 011 ii T=α ;  ;  ; )()( 012 ij T=α )()( 013 ik T=α

   ;    ;    ;                     (48) )()( 021 ii T=α )()( 022 jj T=α )()( 023 jk T=α
)()( 031 ki T=α ; ; ; )()( 032 kj T=α )()( 033 kk T=α

 

ANNALS of the ORADEA UNIVERSITY. 
Fascicle of Management and Technological Engineering, Volume IX (XIX), 2010, NR1 

 2.39 



Observations: 
In the rotation of coordinate axes in space nine angles interfere (direction cosines), three 
for each new axis in relation to each of the three initial axes, which are fixed. These nine 
direction cosines are not independent among themselves, they are linked through 
fundamental relations related to a direction in space:   
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There are also other two groups of relations which express the conditions of 
perpendicularity of every two axes of the same system: 
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There results that the nine direction cosines which determine the positions of the system 
Oxyz, in relation to permanent system O0x0y0z0,  are not independent; they have to 
demonstrate  and verify the above-mentioned relations. 
These relations determine an octagonal transformation.  
Since there are six distinct relations in the direction cosines system Oxyz, axes, we 
deduce that only three of these nine cosines are enough to determine the position of 
trihedron Oxyz in relation to system O0x0y0z0.  
The six relations can be reduced to: 
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2
1 =++ mmm ααα        (m = 1, 2, 3),   (53) 

0332211 =++ nmnmnm αααααα     (m, n = 1,2,3;m ≠ n).  (54) 
 

The direction cosines expressed in relation 48 can form the orthogonal quadric matrix: 
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where:    
[ ] 1det =a .      (56) 

 
As a result, vector  can be expressed as follows:  )r( 0

[ ] [ ] )()()( 10 rarar T −== ,     (57) 
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where :  
    is the transpose matrix   and      [ ]Ta [ ] 1a −   is the inverse matrix. 
 
If we multiply the previous relations with matrix [ ]a , on the left, we get the following 
relation: 

[ ] )()( 0rar = ,      (58) 
because: 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]Eaaaaaaaa TT =⋅=⋅=⋅=⋅ −− 11    (59) 
 
Observations: 
Matrix  is called the pass matrix from permanent system O0x0y0z0 into the mobile 
system Oxyz. 

[ ]a

Matrix  is named pass matrix from mobile system Oxyz into the permanent system fix 
O0x0y0z0.  

[ ]Ta

The matrix of the two transformations, [ ]a  and [ ]Ta  are non-singular matrices which 
operate as transition operators. Their determinants are different from zero, because their 
columns or lines are linearly independent.   
 
2.3.2 Determination of matrix of the RSA position at random movement in space  
We take the position of point M defined by position vector rr , in relation to mobile system 
Oxyz, and by ρr  in relation to the permanent system O0x0y0z0  (fig. 3) 

Three fundamental notions are defined: 
a) Absolute movement of point M, considered in relation to system O0x0y0z0 . 
b) Relative movement of point M considered in relation to mobile system Oxyz. 
c) Transport movement, considered as movement of a point M’ soldiery with mobile 

system Oxyz (the robot in our case). 
Position of point M in relation to mobile system Oxyz is given by the matrix which is 
associated with position vector r .  
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Fig. 3 

 
[ ]Tzyx)r( =            (60) 

where: 
x, y, z are projections of vector r  on the axes of mobile reference system Oxyz. 
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Position of mobile reference system Oxyz (of the robot) in relation to the permanent 
system O0x0y0z0 (of the base ship) will be given by the position of origin O of the mobile 
system  by coordinates   and by Euler angles ψ, θ and ϕ, formed by axes Ox, 
Oy, and Oz with the axes of the permanent system. These parameters form the following 
matrices:  
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Position of point M, in relation to the fixed point, is given by the matrix equation: 
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   where: 
[ ] [ ] [ ] [ ]ΨΘ ⋅⋅= aaaat ϕ ;      (63) 
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After doing the products, matrix [  appears as a orthogonal matrix, consisting of the 
following elements:  

]ta

 
ϕθϕα sincossincoscos11 Ψ−Ψ= ; 
ϕθϕα sincoscoscossin12 Ψ+Ψ= ; 

    ϕθα sinsin13 = ; 
ϕθϕα coscossinsincos21 Ψ−Ψ−= ; 
ϕθϕα coscoscossinsin22 Ψ+Ψ−= ; 

ϕθα cossin23 = ; 
θα sinsin31 Ψ= ; 
θα sincos32 Ψ−= ; 

θα cos33 = .             (67) 
 

Chapter 3. CONCLUSIONS 
The evolution under immersion and maximum stability of the underwater robot is important 
for the accuracy of the previously stated tasks. The base ship at anchor is considered fixed 
during the robot’s movement from and to the work site.  
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Taking into account the position of the intervention ship (which has all the facilities  for the 
robot’s safe transportation, launch, and recovery, currently named „base ship”), off which 
the launching is made, we can state the underwater robot’s trajectory, as well as the 
correct positioning of the robot around the work site. The robot will remain in this position 
all through the work period of the manipulator arm and of the mechanic hand. The final, 
fixed position of the robot will be convenient for the robot to reach the respective object 
until the work is finished.  
From this moment on, the minisubmarine will become the base submarine. In this case, 
the system of mobile coordinate axes will be attached to the mechanical hand of the 
manipulator arm, while the calculus will be made according to the same algorithm, and 
taking into account the new systems of coordinate axes .The manipulator arm should be 
able to work continually, at high parameters, all through the necessary work period, at the 
underwater structure.   
When it comes to the study of the underwater robot’s cinematics, in order to state what the 
movement equations are, it is necessary to choose the right systems of coordinate axes.  
The cinematic system influences the construction, manoeuvrability and functional 
parameters of the robot. The structural, cinematic lay-out determines the functional and 
cinematic potential of the robot. In order to determine the matrix of the underwater robot’s 
position in the case of some movement in space, the following determinations were made:   

- determination of position equations  for successive rotations; 
- determination of position equations  for successive translations. 

The matrices for the transformation of the coordinate axes system of the position vector in 
a plane for translation were determined, and then the same was determined for the 
rotation of the coordinate axes. After these calculuses were done, the determinations for 
transfer matrices of the coordinate axes in space were also done. 
Since knowing the movement of an underwater vehicle means the determination, at a 
certain moment, of the movement of its position vector, the calculuses were done for the 
determination of the position matrix of the underwater robot, taking into account any 
movement in space.  
After that, the form of the movement equations in space was determined, with six degrees 
of freedom, and finally, the general movement equations that develop in vertical plane, 
were determined. The evolution in immersion is the basic movement of any underwater 
vehicle.  
In conclusion, by determining the position equations, this paperwork solves one of the 
essential and difficult problems of the cinemaric analysis of the underwater robot, which, 
after reaching the work site, it is anchored and becomes a fixed system (base robot, with a 
well-determined position), for the cinematic calculuses and for the mathematical model of 
the manipulator arm which is attached to it, and which starts working from this moment on.  
All these equations can become a mathematical model which can evaluate the movement 
in immersion of a underwater robot.   
 
REFERENCES 
 1- Handra-Luca V., - Robots. Structure, cinematics and characteristics. Dacia Publishing House, Cluj 
Napoca, 1996;  
 2- Sgrumală M., Bidoae I. – Small ships design and building – Technical Publishing House, 1978;  
 3- Submarine seamanship – Defense Ministry – Divers Centre Constanta, 1989; 
 4- Voinea R., Voiculescu D., Simion F.P. –Introduction  to the rigid solid mechanics, with applications in  
engineering – The Romanian Academy Publishing House -1989; 
 5- http://www.frc.ri.cmu.edu/robot-ics-fac/; 
 6- http://www-robotics.cs.umass.edu/robotics.html; 
 7- http://www.syseng.anu.edu.au/rsl/rsl_sub.html; 
 8- http://www-robotics.cs.umass.edu/robotics.html; 

ANNALS of the ORADEA UNIVERSITY. 
Fascicle of Management and Technological Engineering, Volume IX (XIX), 2010, NR1 

 2.43 



 9- http://www.cs.cmu.edu/cil/vision.html; 
10- http://www.ri.cmu.edu. 
 
LIST OF ACRONYMS USED 
AUR = autonomous underwater robot; 
AUV = autonomous underwater vehicle; 
ROV = remotely operated vehicle; 
T-R = translation-rotation; 
UR = underwater robot; 
URS = underwater robotic systems; 
URV = underwater robot vehicle; 
UUV = unmanned underwater vehicle.  
 
SYMBOLS USED  
CF = flotability centre; 
CG = centre of gravity; 
Cp = local pressure coefficient; 
Cx = total drag coefficient expressed either by the dead flat part of the ship (the largest part of the UR), and 
marked with Cx(D

2
, or with  volume representing the cube of 2/3 and marked with Cx(V

2/3
); 

Cx,f = the drag coefficient based on the friction of the limit layer or drag coefficient of friction; 
Cx,p = the drag coefficient based on the action of pressure forces or shape forces;  
(Cx)M = the aerodynamic drag coefficient of the robot model; 
(Cx)N 

 = the aerodynamic drag coefficient of the robot prototype; 
ri = matrix that characterizes the  relative rotation movement; 
θ  = pitch angle or longitudinal trim;  

cΨ  = constant course angle; 

Ψ  = roll angle or transversal trim;  

[ ] 1a − = the inverse matrix; 

[ ]Ta = the transposed matrix; 

[ ]I  = the unity matrix;  

k,j,i = the mobile system of coordinates unit vectors and ,0i 0j , 0k the fixed system of coord. unit vectors;  

p = the rolling angular speed; 

Fρ = the position vector of hull centre with the mobile system of coordinates; 

Gρ = the position vector of the gravity centre in relation to the mobile system of coordinates; 

0ρ  = position vector in relation to the general (fixed) system of coordinates; 

OFρ  = the position vector of the hull centre in relation to the fixed system of coordinates; 

OGρ  = position vector of the gravity centre in relation to the fixed system of coordinates; 

q  = the pitch angular speed;  

r  = the swing angular speed; 

,u  ,v  w  = projection of translation speeds for axes Ox, Oy, Oz; 

ANNALS of the ORADEA UNIVERSITY. 
Fascicle of Management and Technological Engineering, Volume IX (XIX), 2010, NR1 

 2.44 


	Chapter 1. INTRODUCTION 
	Chapter 2. THE EVOLUTION OF A SUBMERGED UNDERWATER CRAFT
	2.1 Generalities concerning
	2.2 Notions about stability of underwater robots 
	2.3 Determination of position equations

	LIST OF ACRONYMS USED
	SYMBOLS USED 

