STUDIES CONCERNING THE DESIGN OF THE RUNNER, GATE AND VENTING SYSTEMS IN THE CASE OF THE HIGH PRESSURE DIE CASTING TECHNOLOGY

PETI Ferencz, GRAMA Lucian, SOLOVĂSTRU Ioan, CORBA Cristian
SC CIEMATRONIC SA, Târgu-Mureș; University of “Petru Maior” Târgu-Mureș, Technical and Managerial Engineering Department;
SC CIE R&D ROM SRL, Târgu-Mureș; University of Oradea, Romania
petiferencz82@yahoo.com; lgrama@engineering.upm.ro;
isolovastru@ciematronic.ro; cristicorba@yahoo.com

Keywords: high pressure die casting, runner, gate, overflow, mold design

Abstract: This paper describes the main type of runner systems used in the high pressure diecasting technology, the design of the runner, gate and venting systems which are important factors in the quality of the high pressure diecasted parts.

1. Introduction
The runner system has the role to conduct the molten alloy from the shotsleeve in the cavities of the high pressure diecasting mold with the main scope of the forming of the part.
The runner system has to allow the guiding of the material to the ingate section on the shortest possible way. The runner should have the cross-sections as square as possible

2. Main runner types and runner design
The main type of runner systems used in the high pressure diecasting of aluminium are the following:
- Vertical runner system
- Runner system with V shape
- Horizontal runner system

In the figures 2.1. and 2.2. are presented the vertical gating systems and the determination of the different cross sections of the gating system.
The disadvantage of this type of runner systems is that the filling of the cavities is consecutive, which can give differences from quality point of view for the parts resulted in the different cavities.

Figure 2.1. Vertical runner system designed incorrectly [7]
Figure 2.2 Correctly designed vertical runner system
In the figure 2.3. is presented the runner system with V shape which is mostly used for the parts which requires compact structure and high precision. The disadvantage of this type of runner system is that it requires the melting of a bigger quantity of alloy for the realize of the gating system.

![Figure 2.3. Runner system with V shape](image)

Figure 2.3. Runner system with V shape [7]

In the figure 2.4. is presented the runner system with V shape for a four cavities mould used to diecast a transmission bracket.

![Figure 2.4. Runner system in V shape for a transmission bracket](image)
In the figures 2.5. and 2.6. are presented the horizontal runner systems: horizontal runner system with four cavities with two ramifications in V shape and horizontal runner system with four alligned parts.

Figure 2.5. Horizontal runner system with four cavities with two ramifications in V shape [7]

![Figure 2.5](image)

Figure 2.6. Horizontal runner system with four alligned parts [7]

![Figure 2.6](image)

In the figure 2.7. is presented a horizontal runner system with four alligned parts for an engine suspension bracket.
The ideal shape of the runner cross section is the circular one because this shape allows the smallest temperature lost of the molten alloy during the injection. In the figure 2.8. is presented the temperature distribution chart in the runner system in function of the shape of the runner cross section.

3. Design of the gate system
The design of the gate system usually starts with the determination of its sections surface. In order to determinate gate cross section the filling speed and the tilling time must be choosen.
The filling speed v_{Ma} [m/s] can have values between 30 -50 m/s.
The filling time t_{med} [s] depends and it is choosen in function of the medium wall thickness s [mm] of the part, according to the Table 3.1.

<table>
<thead>
<tr>
<th>s</th>
<th>1.5</th>
<th>1.8</th>
<th>2</th>
<th>2.3</th>
<th>2.5</th>
<th>3</th>
<th>3.8</th>
<th>5</th>
<th>6.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{med}</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
<td>0.07</td>
<td>0.08</td>
<td>0.12</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Knowing the specific density $\rho [g/cm^3]$ of the alloy and the volume of the part $V_a [cm^3]$ the weight of the part is going to be determined $m_a [g]$.
The choosen filling speed v_{Ma} has to be transformed in [cm/s] and the gate cross section $S_a [mm^2]$ is determined with the formula:

$$S_a = \frac{100 \cdot m_a}{\rho \cdot t_{med} \cdot v_{Ma}} \quad [5, \text{ formula 3, page11}]$$

The calculated cross section is increased with 20-50%, and after choosing the thickness of the section (between 1-3,5 mm) the length of the gate can be calculated.
The diameter of the piston should assure a filling rate of 40-70%.

4. Design of the venting system
In order to obtain a good quality of the diecasted parts in terms of health of material the cavities of the mould must have an efficient venting. In most of the cases the venting of the cavities is done within the overflows. In the figure 4.1. is presented schematic the shape of the overflows recommended by the company Bühler.

![Figure 4.1. The shape of the overflows recommended by the company Bühler [7]](image)
5. Flow and solidification simulation

The first activity of the flow simulation preparation is the ingate channel and the overflows design. The ingate channel has the role to conduct the molten aluminium from the shot sleeve to the cavities and the overflows have the role of evacuation of the air and gases resulted from the lubricification of the mold.

The purpose of the flow simulation is to develop and improve the shape of the part and also of the ingate channel to have an optimum filling of the cavities and to identify the last filled areas where the overflows have to be placed in order to assure good wenting of the cavities and minimize gas porosity defects.

For the flow simulation can be used softwares as Procast.

In the figure 5.1. is presented the flow simulation of two cavities of the mold of the transmission bracket.

![Figure. 5.1. Analyse of the cavities filling with Procast software](image)

With the same software is performed the solidification simulation wich has the role to identify the areas where the part presents areas with liquid fractions after the optimum solidification time wich can cause shrinkage porosities. The shrinkage porosity appears in areas where is concentrated big mass of aluminium, where the thickness of the walls is too high.

![Figure. 5.2. Solidification simulation with Procast software](image)

6. Conclusions

The design of the runner, gate and venting systems in the case of the high pressure die casting technology requires a high qualification of the design team members, performant and expensive softwares for simulation. Even by fullfilling these requirements in many cases after the real trials during the serial production the runner, but mostly the gate and wenting systems has to be continuously improved.
7. References
[12] *** – Procedimiento IDT 05/1: Cuaderno de cargas de moldes, rev05, CIE Inyectametal, 2007