CERTAIN MODELS OF MILLING PROCESS USED FOR ASSESSING OF DYNAMIC STABILITY SYSTEM OF MACHINE TOOLS

POP P. Adrian¹, BEJINARU-MIHOC Gheorghe²
¹University of Oradea, e-mail: adippop@yahoo.com
²“Transilvania” University of Brasov, e-mail: bejinaru_georghe@yahoo.com

KEYWORDS: dynamic stability system, inserts, model, milling process, side-milling cutter

ABSTRACT: This paper is presented some models of milling process used for evaluation of dynamic stability of machine tools. In addition, a model of milling process by used a side-milling cutter with inserts in details is presented. These mathematical models together with experiments test assure the investigation of dynamic stability system of machine tools and lead to enhance the performances of process.

1. INTRODUCTION
During of cutting process the strong vibrations can occurred, which affect the accuracy of machining, tool wear, etc. These perturbations maybe caused by different items: thickness of cut width of cut, spindle speed, rake angle, effect-parameters of cutting force, effectiveness thickness cut, temperature in contact zone, etc. [1-17].

A dynamic machining system (DMS) is composed by an elastic system (SE)-formed by workpiece-tool subsystem, with one DOF (degree of freedom) as Kelvin-Voight associated model, and the cutting system (PA) by the static stiffness- \(K_s \) and cutting force- \(F \), in Fig.1 is presented [4-6].

During of cutting process can occur three relative trajectories of the point on the cutting edge of cutter: predictable trajectory (as reference), unperturbed trajectory (get by \(F_0 \)), and perturbed trajectory (get by variation of thickness cut- \(a \), etc.) [4-6].

The DMS is stable when it has the capacity to maintain too closed the perturbed trajectory near unperturbed trajectory, and unstable system in otherwise. If \(\mu=0 \), and \(K + K_s = \bar{K} \), the Eq.(3) becomes (\(F_0=0 \)):

\[
m\ddot{y} + c\dot{y} + Ky = \bar{K}y = 0
\] (4)

The mathematical model presented in Eq. (4) is stable if its answer- \(y_1 \), is canceled in time, which means [4-6]:

\[
m\ddot{y} + c\dot{y} + Ky = F_0
\] (1), which [4-6,19]:

\[
F = F_0 - \Delta F, \quad \Delta F = K_s \left(1 - \mu e^{-\frac{Ta}{\mu}} \right) \cdot y
\] (2),

where: \(\Delta F \)-dynamic force, \(T_a \) = decay time, \(\mu \) = overlap factor. In final Eq. (1) becomes:

\[
m\ddot{y} + c\dot{y} + \left[K + K_s \left(1 - \mu e^{-\frac{Ta}{\mu}} \right) \right] y = F_0
\] (3)

Fig.1. Diagram of DMS with one-DOF [4-6]
For the linear DMS ($\mu \neq 0$) a main importance is presented by the absolute stability. The SDP with delay is absolute stable if its answer is asymptotic stable. For some values of SDP's parameters, the system can be stable, and by other values is unstable. The DMS parameters range with zero entry, on which occurs a transient system with decay in time and any initial condition of motion, it's named the stability domain, and for system that has arise in time of transient answer is named absolute unstable domain. At stability border of these systems is a DMS' answer of approximately harmonic shape and its frequency is near of the eigenfrequency's structure.

2. MODELS OF MILLING PROCESS

For many years, the scientific study of researchers has been focused of development of many models of milling process, which assessing the stability of machine tools and milling processes [1-9, 20-28].

For the beginner, we'll start with a model of milling cutting process at orthogonal process by used a cylindrical milling cutter with straight teeth, presented in Fig.2 [4,6].

![Fig.2. The model of orthogonal milling process used milling cutter with straight teeth [6].](image)

By noted of $k_i^{(u)}$-the stiffness of cutting force for one tooth, the dynamic variation of cutting force is [4,6,19]:

\[
\lim_{t \to \infty} y_i = 0 \quad \text{(5), and unstable if:} \\
\lim_{t \to \infty} y_i \to \infty \quad \text{(6)}
\]
\[\Delta F_i = k_i^{(a)} \cdot \Delta a_i = -k_i^{(0)} \left(-\mu e^{-pT} \right) \cos \theta_i \sin \theta_i \cdot \Delta \]
(7), where: \(x=[x_1, x_2] \),
T-delay time, and \(\theta_i \) is the angle that defined the position of tooth-\(i \) at the normal of cutting surface. The tooth-\(i \) remains in contact with workpiece only for the condition of \(\theta_i \in [\theta_0, \theta_e] \),
where \(\theta_0 \) is the angle of entry cutter in material and \(\theta_e \) is angle of outside cutter from material (Fig.2).

Considering that the value of \(k_o^{(a)} \) remained the same for each tooth of milling cutter-\(z \), can be written [4-6,19]:

\[\Delta F = \Delta F^{(l)} + \Delta F^{(c)} \]
\[\Delta F = -H(p) \cdot x \]
(8), where the transfer function of milling process is:

\[H(p) = H^{(l)}(p) - \mu e^{-pT} H^{(c)}(p) \]
(9)

In final is obtained the relation:

\[
\begin{bmatrix}
\Delta F_1 \\
\Delta F_2
\end{bmatrix} = \Delta F = -H(p) \cdot x
\]
(10), and the expression of \(H(p) \) is:

\[
H(p) = \left(I - \mu e^{-pT} \right) \left[\sum_{i=1}^{z} k_i^{(a)}(\theta_0) \cos(\theta_i + \theta_0) \cos \theta_i, \sum_{i=1}^{z} k_i^{(a)}(\theta_0) \cos(\theta_i + \theta_0) \sin \theta_i, \sum_{i=1}^{z} k_i^{(a)}(\theta_0) \sin(\theta_i + \theta_0) \cos \theta_i, \sum_{i=1}^{z} k_i^{(a)}(\theta_0) \sin(\theta_i + \theta_0) \sin \theta_i, \right]
\]
(11)

In similar mode can be determined the components of dynamic cutting force for bevel milling cutter, where the cutting force has tree components located parallel with an reference tree-orthogonal system, or for general case that the milling cutter is considered as an un-deformed body with six DOF. From Eq.(11) can be observed that the components of dynamic force \(\Delta F_i \) (l=1,2) depend of simultaneous nr. of teeth engaged in cutting (by \(\theta_{in}-\theta_{e} \) and pitch of tooth) and \(\theta_0 \), which can written [4,6,19]:

\[\theta_i = 2\pi \cdot n \cdot t + i \cdot \Delta \theta \]
(12), where: \(\Delta \theta \)-is circular pitch of teeth.

For a multivariable DMS [4,6] is consider an particular case when (SE) has the eigenvalues of moving equal with the axes nr. of Cartesian rectangular system:

\[x - \gamma \cdot G(p) \cdot \gamma^{-1} \cdot \Delta F(x, px) = \gamma \cdot G(p) \cdot \gamma^{-1} \cdot F_0 \]
(13),

where the characteristic equation is:

\[\left| I - \gamma \cdot G(p) \cdot \gamma^{-1} \cdot H(p) \right| = 0 \]
(14), in this case the unit matrix has the same dimension with transfer function of elastic system-G(p), respectively the matrix transfer function of cutting process- H(p).

For the study of (SE) with two DOF for the milling process of cylindrical milling cutter with straight teeth is presented the model from Fig.3 [4,6].
From the model of milling process with two DOF and used milling cutter with straight teeth can be written the matrix [4,6,19]:

\[
\gamma = \begin{bmatrix}
\cos \gamma_{11} & \cos \gamma_{21} \\
\cos \gamma_{12} & \cos \gamma_{22}
\end{bmatrix}
\]

(15)

\[
G(p) = \begin{bmatrix}
\frac{1}{(m_1p^2 + c_1p + k_1 + \phi_{11} \gamma_{01}^2)} & 0 \\
0 & \frac{1}{(m_2p^2 + c_2p + k_2 + \phi_{12} \gamma_{02}^2)}
\end{bmatrix}
\]

(16), where is supposed that associated equivalent weights of eigenvalues of moving (which have non-linear characteristics) are different, and \(\gamma_{01}\) and \(\gamma_{02}\) are get form relation:

\[
x_0 \cdot \cos \alpha_1 = \sum_{q=1}^{n_0} y_{0q} \cos \gamma_{q1}
\]

(17)

By altering the parameter \(p=j\omega\) the Eq.(13) is led to obtain the stability curves of DMS into stability range [4,6]:

\[
k_0^{(\omega)} = k_0^{(\omega)}(\varepsilon, \omega) \\
f(\varepsilon, \omega) = 0
\]

(18)

3. MODEL OF SIDE MILLING CUTTER WITH INSERTS

The milling process model of traditional precision milling machine for tool-shop (Fig.4) has done, using side-milling cutters with three cutting edges and eight positive triangles inserts, type TCMT 16T308T N7010 [11,12]. The notation of axes milling machine is as: (X)–axe of horizontal main spindle; (Y)–axe of cross feed table related to main spindle; (Z)–axe of vertical displacement table. The particularity of this machine (FUS22 modified), higher rigidity of X-axe, lead to ignore the force \(F_x\), which doing that only forces of Y and Z-axes exert influence in milling process.
The cutting force is determined by its two components (\(F_t\)-tangential force, \(F_r\)-radial force), which have formula \([1,4,11,12,15-17]\):

\[
F_t = K_t \cdot \vec{t} \cdot g(\theta_i)
\]

\[
F_r = K_r \cdot F_t
\]

(19), where: \(K_t, K_r\)-coefficients of cutting force, \(\vec{t}\)-depth of cut, and \(g(\theta_i)\)-thickness cut. If difference \(\theta_{ci} - \theta_{in} > \theta_{p}\), where \(\theta_p\)-is pitch of milling cut, that due to more teeth of cutter would be in work and the angle \(\theta_i\) to became \(\theta_i = \theta + i \theta_p\), \(\theta\)-is reference angle tooth for \(i = 0\), and \(\theta_p = 2\pi/N_z\), where \(N_z\) is inserts number.

After all transformations and calculus, dynamic equation of cutting force in matrix form became:

\[
\begin{bmatrix}
F_y \\
F_z
\end{bmatrix} = \frac{1}{2} \vec{t} \cdot K_t \begin{bmatrix}
b_{yy} & b_{yz} \\
b_{zy} & b_{zz}
\end{bmatrix} \begin{bmatrix}
\Delta y \\
\Delta z
\end{bmatrix}
\]

(20), where: \([B]\)-is the matrix of directional force process coefficients. The tool vibration assumes to occur at chatter frequency-\(\omega_c\), when a marginally stable depth of cut has taken. The forces have described as harmonic functions and dynamic equation of milling cutter has written \([1,4,8,11,12]\):

\[
\{F\} e^{i\omega_c t} = \frac{1}{2} \vec{t} \cdot K_t \left[1 - e^{-i\omega_c T}\right] \begin{bmatrix}
B_0 \\
\Gamma(i\omega_c)
\end{bmatrix} \{F\} e^{i\omega_c t}
\]

(21), where: \([B_0]\)-is matrix of average component of Fourier series expansion, \([\Gamma(i\omega_c)]\)-matrix of transfer function in tool-workpiece contacted zone. The Eq. (21) has the solutions if its determinant is zero:

\[
\det \left[I - \frac{1}{2} \vec{t} \cdot K_t \left[1 - e^{-i\omega_c T}\right] \begin{bmatrix}
B_0 \\
\Gamma(i\omega_c)
\end{bmatrix}\right] = 0
\]

(22)

The eigenvalues of characteristic equation is writing as:
The eigenvalues of Eq. (23) can be calculated for a chatter frequency-\(\omega_c \), cutting force coefficients are depend by condition of material-geometric tool, penetration angle(\(\theta_{in}, \theta_{ex} \)) and the transfer function of structure \(\Gamma_o(i\omega_c) \). After certain simplifications and changed eigenvalues and expressed \(e^{-i\omega_c T} = \cos \omega_c T - i \sin \omega_c T \), the critical depth of cut at resonance is:

\[
\bar{t}_{cr} = \frac{-2\pi \Pi_R}{N_c K_c} \left[1 + \frac{\sin^2 \omega_c T}{(1 - \cos \omega_c T)^2} \right]
\]

(25), where: \(\Pi_R \) -is real part of eigenvalue, \(\omega_c \) - T-delay phase between vibration at successive period of tooth. The modeling of milling process has made for 4 side-milling cutters with inserts, ones of them was the cutter FI160 that is a side-milling cutter with three cutters, Ø160mm and eight interchangeable triangles carbide inserts type TCMT 16T308T N7010 in zigzag position (bevel angle 70\(^\circ\)), with angle \(\alpha = +60 \) and pitch angle \(\delta = 45 \)\(^\circ\). As entry’s data were the values: \(t_{max} = 1 \text{mm} \), \(\theta_{max} = 9.07^\circ \), resulted \(K_t = 983 \text{N/mm}^2 \) and \(K_r = 0.130 \) (Fig.5).

Fig.5: Stability diagram of milling process by used cutter FI160 for \(K_t = 983 \text{N/mm}^2 \); Series1-experimental mode, Series2-analytical mode

By analysing the diagrams of milling process by used milling cutter FI160 a little difference of 0.02-0.07mm, between the analytical and experimental mode can be seen, which confirms the mathematical model of milling process.

4. CONCLUSIONS

This paper has presented certain models of milling process used for assessing of dynamic stability of machine tools. In addition, a model of milling process by used a side-milling cutter with inserts in details is presented.

These mathematical models are demand to determination of stability diagram’s cutting process and the investigation of machine tools, assured the possibility to find the solutions for performing the process and improving the performances of machine tools.
5. ACKNOWLEDGMENT
In memorial of outstanding Prof. Sergiu T. CHIRIACESCU, PhD, DHC, from “Transilvania” University of Brasov, Corresponding Member of Romanian Academy, Titular Member of Romanian Technical Science Academy, that had remarkable researches and contributions in the field of theoretical and applied mechanics.

6. REFERENCES

