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Abstract. This paper presents the development of a health monitoring system prototype that 

integrates five essential sensors—heart rate, pulse oximetry, temperature, galvanic skin response 

(GSR), and blood glucose—using a Raspberry Pi 5 microcontroller, a mobile application, and 

machine learning algorithms. The system is designed to address the rising demand for accessible, 

real-time health monitoring, particularly for individuals with chronic conditions. The prevalence 

of chronic diseases and the high cost of frequent hospital visits underscore the need for affordable 

alternatives, making this system an efficient and user-friendly solution for continuous health 

monitoring. The Raspberry Pi 5, with its powerful quad-core processing capabilities and 

seamless integration with multiple sensors, acts as the core of the system, facilitating real-time 

data collection and transmission. Sensor data is visualized and analyzed through a mobile 

application, offering users immediate insights into their health status. The system employs 

MATLAB’s machine learning algorithms to detect abnormal sensor readings, providing accurate 

feedback on potential health risks and allowing users to take proactive steps in managing their 

conditions. Stress management is a key feature of this system, as the GSR sensor measures skin 

conductivity to assess stress levels, contributing to a deeper analysis of the relationship between 

stress and health. Although the project faced challenges in automating blood glucose monitoring, 

manual input is currently used until automation is fully implemented. Future improvements will 

focus on refining machine learning models and expanding the mobile application's interactive 

features to enhance user experience. This project demonstrates the viability of developing a low-

cost, real-time health monitoring solution that integrates cutting-edge technologies, with the 

potential to significantly improve chronic disease management and overall healthcare 

accessibility for users around the world.  

1. Introduction 

The rapid advancement of technology has paved the way for innovative health monitoring solutions. 

According to the Australian Institute of Health and Welfare, chronic conditions have become more 

common [1]. The increase in this phenomenon necessitates affordable and user-friendly health 

monitoring systems. Although traditional health systems have proven to be more reliable, frequent visits 

to a clinic or hospital are both time-consuming and costly. Considering the study conducted by the World 

Health Organization in 2021, it has been proven that over 4.5 billion people are not fully covered by 

insurance. Other solutions are required to improve human health [2]. A promising solution is the 

integration of sensors with mobile applications. Mobile applications provide real-time health data 

monitoring and analysis. This project is particularly relevant to mechatronics engineering, which 

combines mechanical, electronic, computer, and control engineering to create intelligent systems.  



1.1. What: This paper presents a prototype health monitoring system. Four sensors—heart rate, pulse 

oximetry, temperature, galvanic skin response (GSR), and blood glucose— were chosen due to the 

various correlations between their parameters. The sensor data is integrated with a Raspberry Pi 5 

controller and a mobile application. 

1.2. Why: With the rise of chronic diseases and the overpriced insurance system, there is a growing need 

for affordable and user-friendly health monitoring systems. Frequent hospital visits are time-consuming 

and costly. A real-time monitoring system can provide continuous health data, improving the quality of 

life for individuals with chronic conditions. This system also stresses the importance of stress 

management by integrating a stress sensor. This aims to enhance the analysis of the relationship between 

stress and conditions. 

1.3. How: The system collects sensor data through a Raspberry Pi 5 controller and transmits it to a 

mobile application. The app visualizes and analyzes the data, offering insights and alerts based on 

predefined health parameters. 

2. Methods 

The health monitoring system is designed to collect real-time data using a Raspberry Pi 5 

microcontroller, which connects various sensors to measure heart rate, oxygen levels, temperature, skin 

conductance, and blood sugar. Data analysis and anomaly detection are conducted through MATLAB's 

machine learning capabilities, enhancing the system's ability to provide meaningful insights. Below, 

each component of the system is detailed, including hardware integration and data processing methods.  

2.1. System Structure 

In this system design, the central processing unit (CPU) acts as the core component responsible for 

gathering data from various sensors, including those for heart rate, temperature, and other vital signs. 

The sensors are connected to the CPU, which processes the incoming data in real-time as displayed in 

figure 1. After initial processing, the data is transmitted to a machine learning model implemented in 

MATLAB, where it undergoes further analysis to detect anomalies or abnormal values across the 

sensors. The results of the machine learning model are fed back into the system, providing real-time 

insights and user feedback via the Human-Machine Interface (HMI). Additionally, the CPU is connected 

to the Internet of Things (IoT) network, enabling remote access, data logging, and further analysis 

through cloud-based services. This connection between components, machine learning, and interfaces 

ensures efficient data collection, processing, and intelligent monitoring capabilities. 

 

Figure 1: System Structure 



2.2. Raspberry Pi 5 and Sensors Used  

The Raspberry Pi 5 was chosen to serve as the core of the health monitoring system. It features a quad-

core ARM Cortex-A76 CPU that runs 2.4 GHz and LPDDR4X RAM (4GB or 8GB) [3]. It also features 

various connectivity options, including Wi-Fi 6 and Bluetooth 5.2, making it ideal for real-time health 

monitoring and IoT applications. Its GPIO pins enable easy integration with external sensors. The 

Raspberry Pi 5 is also highly capable of handling data from multiple sensors, performing machine 

learning tasks, and running real-time analytics [4].  

2.2.1. Heart Rate Sensor 

The sensor chosen to measure heart rate is the Pulse Sensor Amped. Pulse Sensor Amped utilizes 

photoplethysmography (PPG) measuring heart rate by detecting blood volume changes in the skin [5]. 

It does so by using an LED that shines light onto the skin and a photodetector that measures the reflected 

light. This optical signal varies with the pulsing of blood, enabling heart rate detection [6]. The analog 

signal from the sensor is converted to digital using an MCP3008 ADC for processing by the Raspberry 

Pi. 

2.2.2. Pulse Oximetry  

The sensor chosen to measure the blood oxygen saturation (SpO2) is MAX30102. It provides real-time 

monitoring of oxygen levels, which is critical for detecting respiratory issues. The MAX30102 also 

measures heart rate offering a second method to recheck the heart rate detected by the Pulse Sensor 

Amped. It also uses PPG technology, employing both red and infrared LEDs to measure the oxygen 

levels in the blood [7]. 

2.2.3. Temperature Sensor 

The sensor chosen to measure and monitor the body’s temperature is the DS18B20 digital temperature 

sensor. It measures human temperature using a digital thermometer that operates based on the 1-Wire 

protocol [8]. It has an internal sensor that detects temperature changes through its metal surface, 

converting this data into a digital signal. The sensor measures temperature by detecting the resistance 

change in its semiconductor components, which varies with heat [9]. It provides highly accurate 

readings, typically within ±0.5°C and can be easily integrated with the Raspberry Pi through its 1-Wire 

protocol. 

2.2.4. Galvanic Skin Response (GSR) 

The Galvanic Skin Response (GSR) sensor is used to measure changes in skin conductivity, which 

correlates with emotional arousal and stress levels [10]. This sensor helps analyze stress and anxiety by 

detecting variations in sweat gland activity, a physiological response to stress, making it an important 

addition to the system’s overall health monitoring capabilities.  

2.2.5. Blood Glucose Sensor 

Due to the rise of diabetic patients around the world and across all ages, monitoring the blood glucose 

levels is important. Although the project aims to incorporate a blood glucose sensor, it is currently 

experiencing challenges. The system is being designed to automate this process in the future, but for 

now, manual input is required to track glucose levels, limiting its functionality compared to the other 

sensors. 

2.3. MATLAB Machine Learning Model 

In my project, I developed a machine learning model using MATLAB to analyze sensor data from a 

health monitoring system. The goal was to detect abnormal readings across several health metrics, 

including heart rate, SpO2 (blood oxygen saturation), body temperature, galvanic skin response (GSR), 

and blood sugar levels. The process began by loading the sensor data from a CSV file and defining 

normal ranges for each metric. I then initialized a new column in the dataset to label readings as either 



normal or abnormal based on these predefined thresholds. After labeling the data, I split it into features 

(the sensor readings) and labels (normal/abnormal) for analysis. For model training, I divided the dataset 

into training and testing sets, allocating 80% of the data for training and 20% for testing. I selected a 

decision tree model for this task due to its interpretability and suitability for structured data. The decision 

tree provides clear decision rules, making it easy to understand how different sensor readings contribute 

to the model's predictions as displayed in figure 2. Once trained, the model was evaluated using the test 

data, achieving a high accuracy in classifying the readings. Additionally, I implemented a feature to 

predict labels for new sensor readings, which allows for real-time monitoring. The model not only 

indicates whether the readings are normal or abnormal but also identifies which specific sensors might 

be causing issues, facilitating targeted interventions as shown in figure 3. 

 

 

 
Figure 2: Decision Tree View  Figure 3: Abnormal Sensor Readings Bar Chart 

2.4. Challenges 

During the development of the machine learning model, I faced several challenges, especially while 

experimenting with different algorithms. One notable model I tested was the Support Vector Machine 

(SVM). Despite its theoretical advantages, the SVM consistently produced low accuracy, hovering 

around 50%, which felt more like a guessing game than a reliable predictive system. Consequently, I 

opted to transition to a decision tree model, which offered better interpretability and performance. I soon 

identified a significant factor contributing to the model's initial challenges: limitations within the dataset. 

Many sensor readings were either unlabelled or incorrectly categorized, undermining the model's 

training. To remedy this, I established predefined thresholds for each health metric to define a baseline 

for normal and abnormal readings. This initial labelling was crucial for teaching the model the 

acceptable ranges for each sensor, ultimately providing clearer distinctions for future predictions. 

3. Results 

The decision tree model demonstrated significant improvements over earlier attempts using the Support 

Vector Machine (SVM), which struggled with low accuracy. Notably, the decision tree achieved an 

accuracy of over 99% on the test dataset and approximately 97% on new data. The effectiveness of the 

model's predictions was validated through a confusion matrix, clearly illustrating its capability to 

classify normal and abnormal readings. Additionally, the model's ability to identify specific sensors 

contributing to abnormal readings provides actionable insights, allowing healthcare providers to target 

their interventions more effectively. To ensure the model's reliability, data analysis was conducted to 

prevent overfitting. The decision tree not only excels in classifying readings but also pinpointing the 

sensors responsible for abnormal values, thereby enabling targeted healthcare interventions. The strong 

performance of the model underscores its potential for real-time health monitoring applications. Future 

enhancements may include exploring ensemble methods and expanding the dataset to further improve 

accuracy and robustness. 



 

4. Discussion and Conclusion 

This study successfully developed a machine learning model using a decision tree algorithm to analyze 

sensor data from a health monitoring system. By addressing the challenges posed by data quality and 

establishing clear thresholds for normal and abnormal readings, the model demonstrates a significant 

improvement in predictive accuracy over initial attempts with the SVM. 

Furthermore, the implementation of the decision tree algorithm allowed for greater interpretability of 

the results. This transparency is critical in healthcare applications, where understanding the rationale 

behind predictions can enhance trust among users and healthcare providers. This work contributes to the 

growing field of health monitoring technology, offering valuable insights into the application of machine 

learning in detecting potential health issues early. The integration of multiple sensors in the monitoring 

system provides a comprehensive overview of an individual's health status. This multi-faceted approach 

is vital for chronic disease management, where monitoring various parameters can lead to timely 

interventions and better patient outcomes. Continued research in this domain is essential for refining 

these systems and enhancing their utility in real-world healthcare settings. 

In future iterations of this project, I plan to investigate the incorporation of additional machine learning 

techniques, such as ensemble methods, which could further improve prediction accuracy. Moreover, I 

aim to explore the integration of user feedback mechanisms within the mobile application, allowing 

users to report their symptoms and experiences directly. This could provide valuable context for the 

machine learning model, ultimately improving its predictive capabilities. Moreover, exploring the user 

interface of the mobile application is crucial for ensuring that users can easily understand their health 

data and the implications of any abnormal readings. The usability of such applications can significantly 

impact user engagement and adherence to health monitoring recommendations. A user-friendly design 

will empower users to take proactive steps toward managing their health. 
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