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Abstract. In this paper we briefly sketch the connections of pseudospectra with related 
quantities, in particular, the distance to instability, the H∞ norm, and distance to 
uncontrollability. Pseudospectra and related quantities for non-normal matrices and 
operators where first investigated in the 1970s and 1980s and became a standard tool in 
the 1990s, with applications in mechanics, numerical analysis, operator theory, control 
theory, differential and integral equation. In all of this fields it has been found that in case 
of pronounced non-normality, eigenvalues and eigenvectors alone do not always reveal 
much about the aspects of the behavior of a matrix or operator that matter in applications, 
including phenomena of stability, convergence, and resonance, and that pseudo-
eigenvalues and pseudo-eigenvector may do better.  

 
1. INTRODUCTION 
 
 The pseudospectrum (set of pseudo-eigenvalues) is a powerful modeling tool: for 
example, large real parts of pseudo-eigenvalues (rather than eigenvalues themselves) 
often reveal the behavior of dynamical systems governed by A, Axx =& . Trajectories of this 
system all converge to the origin exponentially if and only if the spectral abscissa 

)(Remax)( 0 AA Λ=α  is strictly negative. But as we observed, this condition is not robust: 

even if it holds, the pseudospectral absciss )(Remax)( AA εεα Λ= may be positive for small 
0>ε . In other words, nearby matrices may not be stable, and related trajectories of 
Axx =&  may have large transient peaks. This argument suggests the pseudospectral 

abscissa )(Aεα (for some small 0>ε ) is a better measure of system decay than the 
spectral abscissa. 
Many classical problems of robustness and stability in control theory aim to move the 
eigenvalues of a parameterized matrix into some prescribed domain of the complex plane. 
However, a simple consideration of the spectrum alone has serious drawbacks in many 
contexts. As Trefethen and others have pointed out (see [10] and the references therein), 
pseudospectra of a matrix (sets of eigenvalues of all matrices within certain distances) are 
more informative and more robust in many modeling frameworks, and in particular as 
indicators of stability, of robustness [2], [3] and of controllability [8]. 
 
2. NOTATION 
 

We consider a matrix A in the space of nn ×  complex matrices Mn. We denote the 
spectrum of A by )(AΛ=Λ , 
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          { } { }dundefinine isIA wherepointIACA 1)(0)(det:)( −−==−∈=Λ λλλ  (1) 

 and we denote by )(Aαα =  the spectral abscissa of A, which is the largest of the real 
parts of the eigenvalues.  
                                        )}(:{Resup Azz Λ∈=εα  (2) 

For a real ε > 0, the ε-pseudospectrum of A is the set  

                                  }where)(:{ εε <−Λ∈∈=Λ AXXzCz  (3) 

Throughout, ⋅  denotes the operator 2-norm on Mn. Any element of the 

pseudospectrum is called a pseudo-eingenvalue.  
The ε-pseudospectral abscissa εα is the maximum value of the real part over the 

pseudo-spectrum: 
                                                        }:{Resup εεα Λ∈= zz .  (4) 

We call this optimization problem the pseudospectral abscissa problem. Note 
αα =Λ=Λ 00 ; .  

If )(min Aσ  denotes the smallest singular value of A then we have a useful caracterization of 
the pseudospectrum 
                                                     })(:{)( min εσε ≤−∈=Λ AzICzA  (5)  
 
Thus the pseudospectra of A are the sets in the z-plane bounded by level curves of the 

function 
11

min )()()(
−−−=−= zIAAzIzg σ , where we interpret the right-hand side as zero 

when ).(Az Λ∈  
We need some more notations. First, consider the Lyapunov condition factor for a matrix 

nA M∈ , defined by 
                                 },,:1inf{)( *1 nHAHAHIHIAL H∈>= −

fff γγγ  (6). 

We compare this condition factor with the power bound  

                                                       ,...}2,1:sup{)( == kAAP k  (7) 

as well as with a third quantity, the Kreisse constant, defined in terms of pseudospectra,  

                                            )}(,0:
1

sup{)( Az
z

AK εε
ε

Λ∈>
−

=  (8) 

which is a bound on the linear rate at which the ε-pseudospectrum bulges outside the unit 
disk, as a function of ε. 
 
3. PSEUDOSPECTRA AND RELATED IDEAS ON STABILITY  
 

The pseudospectral abscissa is related to several other functions important for 
stability analysis. In this section we briefly sketch the connections with the distance to 
instability. 

A matrix A is stable if the spectral abscissa of A satisfies 0)( <Aα , in other words, 
all the eigenvalues have strictly negative real part. If A is stable, its distance to the set of 
unstable matrices [11], also known as the complex stability radius [5] is  

          }0Re:)({min}0)(,:min{)( min ≥−=>∈−=
∈

zzIAXXAXA
Cz

n σαβ εM . (9)  
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It is now easy to check the relationship 
 

                                                       0)()( ≥⇔≤ AA εαεβ ,  (10) 

and more generally, for any real x  
                                                    xAxIA ≥⇔≤− )()( εαεβ . 
 

For a matrix A that is not stable, we have 0)( =Aβ , while for stable A, 0)()( =AAβα , 

and the minimization (9) may as well be done over z on the imaginary axis. A matrix 
nA M∈  has an eingenvalue outside the closed unit disk exactly when the iteration 

kk Axx =+1  exhibits exponential growth. These equivalent proprieties can be checked, for 
discrete –time systems, using the following well known result: 
Theorem 1 (Lyapunov, 1893) For any matrix nA M∈ , the following properties are 
equivalent:  
10. All eigenvalue of A lie in the open unit disk; 
20.   0→kA exponentially as ∞→k ; 

30. There exist a matrix 0fH in Hn such that HAAH *
f .  

For two matrices A and B in the space Hn of  n-by-n Hermitian matrices, we write BA f to 
mean BA − is positive definite. 
This result is deceptive for two reasons. The first difficulty is on of robustness. Because the 
dependence of the eigenvalues on A is not Lipchitz [8], when a matrix A is close to a 
matrix with multiple eigenvalue, unexpectedly small perturbations to A can destroy the 
stability. Secondly, there is the difficulty of transient growth: even if 

  0→kA asymptotically, intermediate values of  kA may be very large [9]. 

These difficulties can be quantified by the following classical result in numerical analysis 
[7]. 
Theorem 2 (Kreiss, 1962). Over any set of matrices in Mn, the Kreiss constant k, the power 
bound P, and the Lyapunov condition factor L are either all uniformly bounded above or all 
unbounded. 

Results parallel to Theorems 1 and 2 hold for the continuous-time version. In that 
case we are interested in bounding tAe   ( 0≥t ), the left half plane takes the place of the 

unit disk, and the Lyapunov inequality becomes 0fH , HAHA +*0 f . The relevant 
pseudospectral quantity is ))((,Re1 Azz εε Λ∈− . 

The relationships between the quantities )(Aεα and β(A) and the robustness of the 
stability of A with respect to perturbation are clear from the definitions. Less obvious is that 
these functions also measure the transient response of the associated dynamical system 

Axx =&  [31]. By choosing ε < β(A) in )(Aεα ,we place more emphasis on asymptotic 

behavior than when we choose )(Aβε = .Stated differently, we choose ε according to the 
size of perturbation we are prepared to tolerate, and measure what kind of asymptotic 
response this allows us to guarantee, instead of measuring the largest perturbation that 
can be tolerated while still guaranteeing stability. Efficient algorithms to compute the 
pseudospectral abscissa )(Aεα and the complex stability radius β(A) are available. Fast 
algorithms based on computing eigenvalues of Hamiltonian matrices is available in the 
MATLAB control toolboxes.  
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4. PSEUDOSPECTRA AND RELATED IDEAS ON CONTROL THEOR Y 
 

The analogous question for controllability asks for distance to uncontrollability, the 
distance from the pair (A, B) to the nearest pair (A/, B/) corresponding to an uncontrollable 
systems.  

For real matrices A and B of  size nn ×  and mn ×  respectively, consider the control 
system defined by 
                                                                  BuAxx +=&  (11) 

This system is said be state controllable at 0tt =  if there exist a piecewise continuous input 
u(t) that will drive the initial state x(t0) to any final state x(tf). Classical theory  provides a 
simple characterization of controllability. The above system is controllable exactly when 
the matrix [A−zI  B] has full row rank, n, for all scalars z ∈ C.  
A small distance to uncontrollability correlates with various difficulties for the control 
system, including numerical challenges for associated “pole placement” problems. A 
simple argument [4] shows that the distance to uncontrollability is given by  

                                                           ]|[min min BzIA
z

−
∈

σ
C

. (12) 

The function to be minimized in the expression (12) has lower level sets of the form 

                                                       }]|[:{ min εσ ≤−∈ BzIAz C   (13) 

which is the pseudospectra, when matrix B is empty. Substantial insight is gained from 
examples, so consider the parameterized matrix pair, [4],  
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where 1η  and 2η are real parameters. Figures 1 and 2 show pseudospectra (produced 
using by T.Wright’s software EigTool [6]) for, respectively, the controllable pair (14) when 

121 ==ηη  and the un controllable pair (14) when 021 ==ηη .  

 
 Figure 1: Pseudospectra for the                           Figure 2: Pseudospectra for the  

      controllable pair (14) with 121 ==ηη          uncontrollable pair (14) with 021 ==ηη  
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The horizontal and vertical axes in the figures show the real and imaginary parts of z. The 
legends on the right sides of the figures show the contour heights (values of ε) on a log 10 
scale, with both plots using the same scale. In Figure 1, the “pseudospectral landscape” 
has three local minima and one can estimate that the global minimum value (by definition, 

the distance to uncontrollability) is about 10
−0.75

(in fact, it is 0.1872). In Figure 2, there are 
only two local minima (forming a complex conjugate pair), and one can see that the 
contours drop to much lower values (in fact, it is easy to check that the minimal value of 
(1.1) is zero at the points z =1 ± 2i). 
In Figure 1, the pseudospectra contain up to, but no more than, three connected 
components, depending on the choice of ε, while the pseudospectra in Figure 2 contain up 
to, but no more than, two connected components. Maximization of the distance to 
uncontrollability for smoothly varying parameterized pair (A, B)(x) over vector of free 
parameters x ∈ Rk, is given with two algorithms namely the Trisection Variant of Gu’s 
Algorithm and the BFGS/Gu Hybrid, [4]. Matlab implementations of the algorithms are 
freely available: http://www.cs.nyu.edu/faculty/overton/software.  

The idea of the H∞ norm of the transfer matrix is also closely related. Consider the 
linear tine-invariant dynamical system 

                                                             uAxx +=&  (15) 

where x denotes the state vector (in this simple case coinciding with the output) and u 
denote the control (input) vector. The transfer matrix of this system is the function 

1)()( −−= AsIsH . Assuming the matrix A is stable, the corresponding H∞ norm is defined by  

                                                 ))((sup max ωσ
ω

iHH
R∈

∞
=  (16) 

where maxσ  denote the largest singular value. Clearly 

                                                  
)(

1
sup

min IiA
H

ωσω −
=

∈
∞

R
 

so 1−
∞

< εH  if and only if we have 

                                             εωσ >− )(min IiA  for all R∈ω .  
In summary: 

                                                
ε

αε
1

0)( <⇔<
∞

HA . (17) 

An important topic in robust control has been the design of controllers that minimize 
the H∞ norm [8]. In the language above, this corresponds to choosing the parameters 
defining the stable matrix A in order to maximize the minimum value of )(min zIA −σ  as z 
varies along the imaginary axis. We first fix the level of robustness ε, and then vary A to 
move the corresponding pseudospectrum as far as possible to the left in the complex 
plane. In other words, we try to maximize a real parameter x such that the H∞ norm 
corresponding to the shifted matrix A-xI is never more than ε-1. 

A particular important example, in control theory, is stabilization by static output 
feedback: given a n-by-n matrix A, an n-by-r matrix B and s-by-n matrix C, find (if possible) 
an r-by-s matrix K such that A+BKC is stable.  
 Stabilization by static output feedback (SOF) is a long-standing open problem in 
control. Robust stabilization further demands stability in the presence of perturbation and 
satisfactory transient as well as asymptotic system response. In [8], are formulated two 
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related nonsmooth, nonconvex optimization problems over K, respectively with the 
following objectives: minimization of the ε-pseudospectral abscissa of A+BKC, for fix 0≥ε , 
and minimization of the complex stability radius of A+BKC:  

                         )(min BKCA
K

+
×∈

εα
srR

   (a)             )(min BKCA
K

+−
×∈

β
srR

 (b)             (18) 

For modest-sized systems, local optimization can be carried out from large number 
of starting points with no difficulty.  

In [4] is applied gradient sampling optimization to many static output feedback 
(SOF) stabilization problems published in control literature. We show results for a turbo-
generator model [6], [4] that allows us to show different choices of the optimization 
objective lead to stabilization with qualitatively different properties, conveniently visualized 
by pseudospectral plot. . Figures 3 through 6 shows pseudospectral plot in the complex 
plane, showing, for particular K, the boundary of Λε(A+BKC) for four different values of ε. 
The legend at the right of each figure shows the logarithms (base 10) of the four values of 
used in the plot. A particular pseudospectrum Λε(BKC) may or may not be connected, but 
each connected component must contain one or more eigenvalues, shown as solid dots. 
The figures do not show all 10 eigenvalues; in particular, they do not show conjugate pair 
of eigenvalues with large imaginary part, whose corresponding pseudospectral 
components are well to the left of the ones appearing in the figures. In Figures 5 and 6, the 
smallest real eigenvalue is also outside the region shown.  

The pseudospectral contours were plotted by T. Wright’s EigTool, an extremely 
useful graphical interface for interpreting spectral and pseudospectral properties of 
nonsymmetric matrices [13]. Figure 3 shows the pseudospectra of the original matrix A, 
that is, with K = 0. Although is stable, since its eigenvalues are to the left of the imaginary 
axis, it is not robustly stable, since three connected components of the 10−2-
pseudospectrum cross the imaginary axis. Figure 4 shows the pseudospectra of A+BKC 
when solves (18 a) with ε = 0, or, in other words, when the rightmost eigenvalue of A+BKC 
is pushed as far as possible to the left. Notice that six eigenvalues of A+BKC are now 
arranged on line parallel to the imaginary axis, and that two of the conjugate pairs are 
quite close to each other, indicating the possibility that at an exact minimizer there is 
double conjugate pair of eigenvalues as well as simple conjugate pair with thesamereal 
part. The10−2-pseudospectrum is now contained in the left half-plane, but the 10−1.5-
pseudospectrum is not.  
 

   
 
Fig. 3. Pseudospectra for Turbo-Generator     Fig. 5. Pseudospectra for Turbo- Generator     
                  with No Feedback                           when 10−1.5-Pseudospectrum is optimized 
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_  
Fig. 4. Pseudospectra for Turbo-Generator         Fig. 6. Pseudospectra for Turbo-  
      when Pure Spectrum is Optimized                   Generator when Complex Stability 
                                                                                            Radius is Optimized 
 

Figure 5 shows the pseudospectra of A + BKC when K solves (4) ε =10
−1.5

,or, in other 

words, when the rightmost part of the 10
−1.5

-pseudospectrum of A + BKC is pushed as far 

as possible to the left. Now the 10
−1.5

-pseudospectrum is to the left of the imaginary axis, 
but the eigenvalues have moved back towards the right, compared to Figure 4. There is 
apparently a three-way tie for the maximizing z in (4) at the local minimizer — one real 
value in its own small pseudospectral component, and two conjugate pairs in a much 
larger pseudospectral component.  
Figure 6 shows the pseudospectra of A + BKC when K solves (18 b) (maximizes the 
complex stability radius β), or, in other words, when K is chosen to maximize the ε for 
which the ε-pseudospectrum of A + BKC is contained in the left half-plane. For this optimal 
value, ε = 10

−1.105
, the ε-pseudospectrum is tangent to the imaginary axis at five points, a 

real point and two conjugate pairs, indicating (as previously) a three-way tie for the 
minimizing z in (18 b). Each minimizing z has its own pseudospectral component. This ε-
pseudospectrum crosses the imaginary axis in the previous three figures. On the other 
hand, the 10

−1.5
-pseudospectrum is now further to the right that it was in Figure 5.  

 
5. CONCLUSIONS 
 

Classical analysis of linear models is based upon eigenvalues, and for many 
problems across mathematics, science, and engineering, such analysis is successful. This 
is most notably true for self-adjoint matrices and operators, which possess a basis of 
orthogonal eigenvectors. Areas of successful applications of eigenvalue techniques 
include acoustics, structural analysis, quantum mechanics, low-Reynolds-number fluid 
mechanics, and numerical analysis. 

In recent decades, recognition has grown that one must proceed with greater 
caution when a matrix or operator lacks an orthogonal basis of eigenvectors. Such 
operators are called non-normal, and this property can lead to a rich variety of behavior. 
For example, non-normality can be associated with transient behavior that differs entirely 
from the asymptotic behavior suggested by eigenvalues. Such transients may manifest 
themselves in slow convergence of iterative processes, in nearness to instability, and in 
the transition to turbulence in fluid flow.  
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Numerous tools have been suggested to describe non-normality and analyze its 
effects. These include classical tools of matrix and operator theory, such as the numerical 
range, the angles between invariant subspaces, and the condition numbers of 
eigenvalues. This paper is devoted to describing and illustrating pseudospectra and the 
connections of pseudospectra with related quantities, in particular, the distance to 
instability, the H∞ norm, and distance to uncontrollability. 
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