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Abstract. In the paper, for an industrial equipment, composed by an electric motor which drives the working 
machine through a rigid coupling, it is elaborated a graphical-numerical method of integration of the 
differential equation of motion. The electric motor is of asynchronous type, having the driving torque as a 
function of angular velocity, and the working machine produces a resistant moment as a periodic function of 
position. The solution of the equation of motion is obtained under the form of a recurrence formula.  
 
1. INTRODUCTION  
 

It is considered the most prevalent rotary industrial equipment, whose dynamic 
model has the structure in figure 1, where: 
- I – driving asynchronous electric motor; 
- II – rigid coupling; 
- III – working machine. 
 

 
 

Fig. 1. Dynamic model of rotary industrial equipment 
 
2. DIFFERENTIAL EQUATION OF MOTION  
 

The differential equation of motion of the rotary industrial equipment is, [2], 
 

                                                       ,MM
dt
dJ rm −=
ω                                                           (1) 

 
where: 
 - J  - moment of inertia, resulted by reducing the whole rotary industrial equipment, at the 
shaft of driving motor; 
 - ω  - angular velocity; 
 - mM  - driving moment, produced by the electric motor; 
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 - rM  - resistant moment generated by the working machine. 
 About the parameters of the industrial equipment, there are made the fallowing 
mentions: 
 - the moment of inertia J  is constant; 
- for the moment of the driving torque it is taking into account the static mechanical 
characteristic (figure 2), whose working portion, AB, is linearized; by moving the origin of 
abscissae in kω  ( kω  - critical angular velocity), it can be written 
 

 
 

Fig. 2. Static mechanical characteristic of electric driving motor 
 
                                                           ,MM km λω−=                                                          (2) 
 
where kM  is the moment of the critical driving torque, and λ  is the inclination of the static 
mechanical characteristic, 
 

                                                          ,Mtg k

0ω
=α=λ                                                            (3) 

 
where 0ω  is the angular velocity of synchronism of the electric motor;  
 - the resistant moment of the working machine is considered as a periodic function of the 
angle of rotation θ  of the rotary industrial equipment, 
 
                                                         ),(M)(M rr Ψ+θ=θ                                                    (4) 
 
where Ψ  is the angular period of the resistant moment. This situation is characteristic for a 
lot of equipment in different industrial branches.  

Taking into account the mentions, stated above, the differential equation of motion 
(1) becomes 
 

                                                       ).(MM
dt
dJ rm θ−λω−=
ω                                               (5) 

 
3. DETERMINATION OF GRAPHICAL-NUMERICAL SOLUTION 
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 By passing from the variable t to variable θ , the equation (5) takes the form 
 

                                                       .MM)
d
dJ( rk

−=λ+
θ
ω

ω                                                 (6) 

 
The graphical procedure consists in the partition of the period Ψ  of resistant 

moment in n equal parts, 
n
Ψ

=θ∆  (figure 3). 

 

 
 

Fig. 3. Partition of characteristic of resistant moment of working machine  
 

The number n of intervals must be as bigger as the resistant moment presents 
abrupt variations during a period and as the degree of precision is bigger. Any way, n must 
be chosen so that, on an interval ,θ∆  to be possible to consider the resistant moment as 
constant and equal to average value on the respective interval. 

For a certain interval i, the corresponding average value of the resistant moment is 
riM  and the equation (6) is written  

 

                                                       .MM)
dt
dJ( rik

−=λ+
ω

ω                                                (7) 

 

 By making the notations ,p
J
=

λ  i
rik q

J
MM

=
−  and separating the variables in the 

equation (7), this one becomes: 
 

                                                     .dd
qp i

θ−=ω
−ω
ω                                                             (8) 

 
 The numerical character of the method is given by the numerical integration of the 
left-hand member of the equation (8), by the method of trapezes [1]. Thus, if it is made the 
notation 
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,
qp

)(f
i−ω

ω
=ω  

 
then the integral of the left-hand member of the equation (8) is 
 

                                                            ∫
+ω

ω

ωω=
1i

i

,d)(fI                                                          (9) 

 
where iω  and 1+ωi  are the values of the angular velocity at the extremities of an interval i in 
which it is split the period Ψ  of the resistant moment. 

The integral (9) is equal to the shaded area (figure 4), which can be approximated 
by a trapeze, so that it can be written 
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Fig. 4. Graphical aspect of method of trapezes  
 

Taking into account of (10), the solution of the equation is  
 

                                    .)
qpqp
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4. CONCLUSIONS 
 

From the solution (11), it is obtained the recurrence formula 
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1                                       (12) 

 
which gives the angular velocity 1+ωi  at the end of an interval ,θ∆  as a function of the 
angular velocity iω  at the beginning of the interval i; evidently, 1+ωi  constitutes, at same 
the time, the angular velocity at the beginning of the next interval, .i 1+  
 In this way, the formula (12) can be considered as the graphical–numerical solution 
of the differential equation of motion (6). 
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