Fascicle of Management and Technological Engineering, Volume VI (XVI), 2007

APPLICATIONS OF MICROLENSES ARRAYS

Adrian P. POP¹, Petru UNGUR¹, Gheorghe BEJINARU MIHOC²

¹University of Oradea, e-mail: <u>adippop@yahoo.com</u>; <u>pungur@uoradea.ro</u> ² "Transilvania" University of Brasov, e-mail: <u>bejinaru@unitbv.ro</u>.

KEYWORDS: array, asphere, fiber optics, focus, microlens.

ABSTRACT: This paper has presented some applications for microlenses such as: fiber coupling and optical switching, collimation of lasers diodes, imaging systems and sensors, beam homogenizers for lasers und illumination systems, array optics featuring high precision, aspherical lenses for creating the best imaging characteristics, etc. In generals, microlenses have a diameter between 10µm–5mm and a curvature radius of 0.25—2.5mm. A real problem is controlling radius of curvature which must be more uniform.

1. INTRODUCTION

In last years the using of microlenses is taken a large and versatile application. Microlenses [3,4,6] are discrete or array based spheres, aspheres and other optics being used for focusing light inside fibers for optical networking or vision system. In generals, microlenses have a diameter between 10μ m–5mm and a curvature radius of 0.25–2.5mm. A real problem is controlling radius of curvature (ROC) which must to be uniform for a performing focus light on fiber and reduce signal loss.

Widely, microlenses array are created by etching or molding glass, silicon or plastics substrates (fig.1). The variation of ROC lenses in across substrate can be critical going to uneven resist thickness or changes in reactive ion beam etching process, substrate failure can be appeared at ROC tolerances held to less 10µm [4].

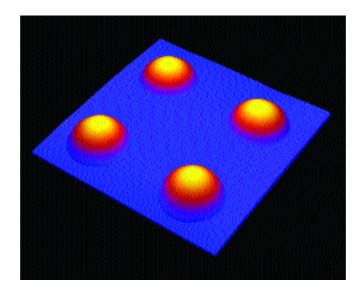


Fig.1. Microlenses array with height of 20µm.

So, in this case the problem of ROC measurement became very important. Ones well-known measuring method is Optical Profiling (White Light Interferometry) [4], which using a non-contact technique, 3D surface roughness and shape measurement of microlenses and other optical components.

Fascicle of Management and Technological Engineering, Volume VI (XVI), 2007

Optical profiling method assured an accuracy measurement, for ROC measurement with an error less than 1%, and less than 0.5% error on larger lenses, enables a high speed measure with resolution and repeatability due to higher quality.

2. APPLICATIONS OF MICROLENS ARRAY

Microlenses can be used in many applications [2,3,5] such as:

- microlenses for fiber coupling and optical switching;
- microlenses for collimation of lasers diodes;
- microlenses for imaging systems and sensors;
- beam homogenizers for lasers und illumination systems;
- array optics featuring high precision;
- for the best imaging characteristics (aspherical lenses);
- simplified alignment and assembly (planar substrates

With a large used is refractive microlenses [5], in special in miniaturization of an optical system and reduction of alignment, being produced in the form of arrays (fields) on planar substrates (wafers). Refractive microlenses are created from synthetic fused silica or silicon in a cleanroom environment using the highly sophisticated processes of the semiconductor industry as photolithography, plasma etching, which assured accuracy production of complex array optics and higher optical quality of microlenses.

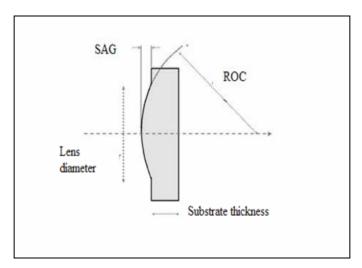


Fig.2. Parameter of refractive lens.

Refractive microlenses [3,5] are characterized from: lens diameter-*D*, focal length-*f*, sag at the lens vertex-*SAG*, refractive index- n_1 , radius of curvature-*ROC*, conic constant-*k* and numerical aperture-*NA*. For spherical lens profiles, the conic constant k = 0; for parabolic profiles, k = -1 and for hyperbolic profiles, k = -(n₁)². The main formulas [5] are:

$$f = \frac{ROC}{n_1 - 1} \tag{1}$$

$$NA \approx \frac{D}{2f} \tag{2}$$

$$SAG = ROC - \sqrt{ROC^2 - 1/4D^2}$$
(3)

Fascicle of Management and Technological Engineering, Volume VI (XVI), 2007

$$ROC = \frac{D^2}{8SAG} + \frac{(k+1)}{2}SAG$$
(4)

High-grade microlenses [5] are almost fabricated synthetic fused silica (n_{589nm} = 1.458) or silicon ($n_{1.5\mu m}$ = 3.478). Fused silica microlenses can be used in the full wavelength spectra from UV (ultra violet) to IR (infrared), silicon microlenses are designed for the infrared wavelength range : λ =(1.2 - 15)µm (fig.3).

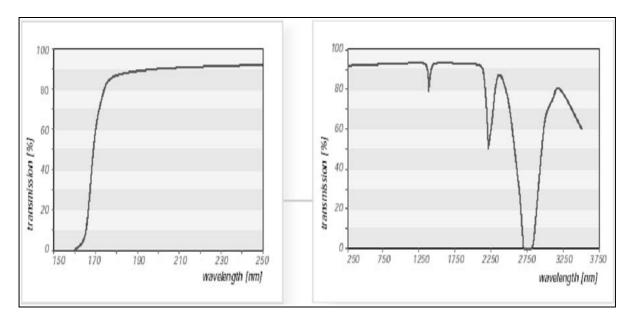
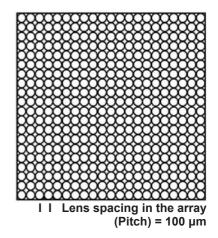
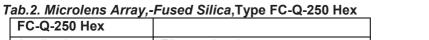
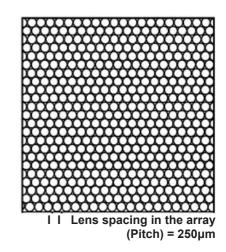



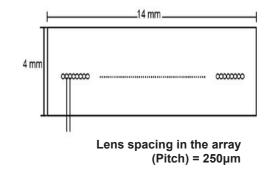
Fig.3. Typical transmission of Schott Lithosil™ Q1 including Fresnel reflection losses (10 mm thickness).

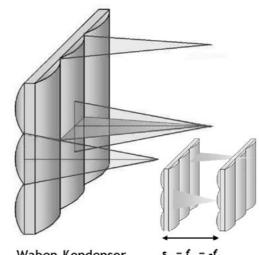
With all these descriptions of characteristics and parameters of microlens array would be presented in following some types of microlenses array in dependence of material fabrication and its application [5].


FC-Q-100 Square			
Applications	Fiber optics, lasers, sensors		
Substrate material	Fused silica		
Refractive index	1.561 at 248 nm		
	1.457 at 633 nm		
	1.444 at 1550 nm		
Substrate thickness	1.2 mm		
Array type	Square		
Lens spacing (Pitch)	100 µm		
Lateral precision	± 0.25 μm		
Lens type	Refractive, Plano-convex		
Lens diameter	95 µm		


Tab.1. Microlens Array,-Fused Silica, Type FC-Q-100 Square

ANNALS of the ORADEA UNIVERSITY. Fascicle of Management and Technological Engineering, Volume VI (XVI), 2007

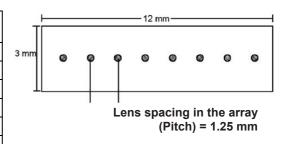

FC-Q-250 Hex				
Applications	Fiber optics, lasers, sensors			
Substrate material	Fused silica			
Refractive index	1.561 at 248 nm			
	1.457 at 633 nm			
	1.444 at 1550 nm			
Substrate thickness	1.2 mm			
Array type	Hexagonal, densely packed			
Lens spacing (Pitch)	250 µm			
Lateral precision	± 0.25 μm			
Lens type	Refractive, Plano-convex			
Lens diameter	95 µm			


Tab.3. Microlens Arrays, Fused Silica, for Fiber Optics

FC-Q-250, 1x48, ROC 330 μm	· · ·	
Applications	Fiber optics, lasers, sensors	
Substrate material	Fused silica	
Refractive index	1.561 at 248 nm	
	1.457 at 633 nm	
	1.444 at 1550 nm	
Substrate thickness	0.9 mm	
Array type	linear, 1 x 48 Linsen	
Lens spacing (Pitch)	250 µm	
Lateral precision	± 0.25 μm	
Lens type	Refractive, Plano-convex	
Lens diameter	240 µm	
Coating, both sides	1250 to 1650 nm	

Tab.4. High-Power Beam Homogenizers

CC-Q-300					
Applications	Beam homogenizers				
Substrate material	Fused silica				
Refractive index	1.561 at 248 nm 1.457 at 633 nm 1.444 at 1550 nm				
Substrate thickness	1.2 mm				
Array type	Crossed cylinder lenses				
Lens spacing (Pitch)	300 µm				
Lateral precision	± 0.25 μm				
Lens type	Refractive, Plano-convex, Cylindrical				
Lens profile	Paraboloid				
Uniform distribution of beam	Flat-Top				

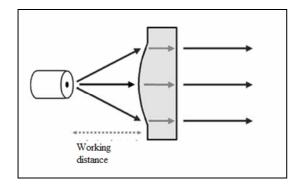


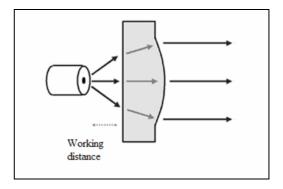
Waben-Kondensor

 $s_1 = f_1 = -f_2$

ANNALS of the ORADEA UNIVERSITY. Fascicle of Management and Technological Engineering, Volume VI (XVI), 2007

Tab.5. Silicon Microlens Arrays, for Fiber Optics					
Fiber optics, lasers, sensors					
Silicon					
3.478 at 1550 nm					
0.5 mm					
12.0 x 3.0 mm					
linear, 1 x 8 lenses					
1250 µm					
± 0.25 μm					
Refractive, Plano-convex					
500 µm					
1250 to 1650 nm					


Tab.6. Type of Silicon Microlens Array for Fiber Optics


Туре	ROC	Wave-length (nm)	Numerical aperture	Conic constant	Array size (mm)
FC-Si-1250	900 µm	1250–1650	0.68	-3.3	12x3
FC-Si-1250	950 µm	1250–1650	0.65	0	12x3
FC-Si-1250	2350 µm	1250–1650	0.26	-4	12x3

The main role of microlenses in an optical system is collimation and focusing of light beams or imaging an object in a focal plane.

In optical communication engineering, a microlens array is used to image the light of a fiber bundle onto an array of micro-mirrors. A second microlens array couples the deflected light of the individual data channels back into a fiber array. The high precision of the lateral array dimensions (better than $\pm 0.25 \ \mu$ m) allows a very accurate fiber-to-lens positioning of many channels in one alignment step. The high-class lens quality and the exceptional lens-to-lens uniformity ensure optimal coupling efficiencies for all optical channels in parallel.

The aspherical lens profiles are used to minimize the spherical aberrations for different optical configurations as vertical incident light.

a. Lens on object side

b. Lens on image side *Fig.4. Way beam through microlens array.*

Fascicle of Management and Technological Engineering, Volume VI (XVI), 2007

As an observation its can emphasize that small pupil diameter of microlenses requires careful design of optimal systems, taking into consideration diffraction effects, light scatter and mechanical tolerances.

3. CONCLUSIONS

This paper has presented some types of microlens arrays with its parameters and materials for fabrication, and certain application. A main role in microlens array is got by its radius of curvature which must be controlled for assured quality image and preventing loss signal.

Advances in 3D measurement techniques, such as optical profiling, have given engineers, process designers and quality control professionals a significantly improved toolkit for describing surfaces.

4. REFERENCES

[1] HARAYAMA, S.: "Technological Paradigm Change and the Role of University: The Case of Micromachine in Japan", pp.1-35, 00.02.pdf., 2001.

[2] LUCA-MOTOC, D., BEJINARU-MIHOC, GH., POP, P.A., NOVAC, M.N.: "Materiale si Semifabricate Optice". Vol.I-Sticla Optica, Transilvania University of Brasov Editor, ISBN 973-635-515-2, Brasov, 2005.

[3] POP, P.A.: "Optica Tehnica", University of Oradea Editor, ISBN 973-673-590-X, Oradea, 2004.

[4] ZECCHINO, M.: "Measuring Micro-Lens Radius of Curvature with a White Light Optical Profiler", Veeco Instruments Inc.-Catalog, pp.1-2, USA, AN509-Measuring-05213Ir.pdf., 2003.

[5] ***: "Microlenses Arrays. Singlets", LINOS-Catalog, pp.36-41, USA, 01_036_041_e05.pdf, 2005.

[6] ***: "Photonic Materials. Development Product", Corning SMILE Lens Array-Catalog, pp.1-2, USA, PI104_SMILE.pdf., 2002.