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Abstract: The bending of the shock-absorber rod calls for a second order analysis as it is a rather 

slender bar subjected to a considerable axial compressive load. The second order deflection analysis of the 

according mechanical model produces the theoretical moment amplification factor. The expression for the 

design moment amplification factor expressed by the theoretical buckling load is established. The diagrams 

of the buckling load are plotted. 

 
1. INTRODUCTION 
 
The shock-absorber rod is subjected to both thrust and bending in a normal 

function of the shock-absorber. The bending stresses are usually determined through the 
first-order bending moment. The bending simultaneous with the compression calls for a 
second order deflection analysis as the rod can be considered a slender bar. The 
considerable axial force acts through the lateral deflection and thus produces additional 
bending moment which cannot be ignored. The presented paper deals with the 
determination of this additional moment. 

It is customary to refer to the bending moment induced by the transverse load and 
this axial load effect as secondary bending moment and to refer to the bending moment 
caused by the primary bending effect as primary bending moment. The ratio of the 
secondary bending moment to the primary bending moment defines the moment 
amplification factor in a larger sense. The moment amplification factor in a limited sense is 
the ratio of the maximum secondary moment to the maximum primary moment. The 
design moment amplification factor is an approximate expression for the theoretical 
moment amplification factor. This paper determines the design moment amplification factor 
for the shock-absorber rod through the analysis of the obtained theoretical moment 
amplification factor. Thus the paper offers a simple formula, accompanied by an 
according diagram, which provides a more accurate determining of the shock-absorber 
rod diameter. 

 
2.SECOND ANALYSIS 
 
The second order analysis of the shock-absorber rod's deflection is carried out on 

a mechanical model shown in Fig.1a. The rod is approximated by a beam-column with 
fixed left end subjected to axial force F and transverse force F1 acting at the free right end. 
The cylinder cover with the seal makes an elastically support for the rod. This support is 
approximated by a linear rotational spring of stiffness c1 and a linear translational spring 
of stiffness c2. The deflected beam-column is shown in Fig.1b. The elastically support is 
replaced by reactions c1ө and c2δ, where ө is the slope and δ the deflection displacement 
at x = a. The primary bending moment diagram and the transverse force diagram are 
shown in Fig. 1c and Fig. 1d. 
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Fig.1. Mechanical model of the shock-absorber rod 

Following the conditions of equilibrium of a deflected infinitesimal segment one 
obtains the differential equation of equilibrium of beam-columns. If a lateral distributed load 
is equal to zero and for small deflection, the basic differential equation of a beam-column 
relating the lateral deflection w, the axial thrust F and the transverse force FT is 

  (1) 
where EI is the flexural rigidity of the beam-column, and ( )' = d/dx .The general solution to 
this equation is 

  (2) 
where A, B and C are constants, f(x) is the particular solution of the differential equation 
and 

  (3) 

Equation (3) for the beam-column shown in Fig. 1 b takes the form 
   (4) 

for 0 ≤ x ≤ a , and 
    (5) 

for a≤x≤L.  
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The constants C1 to C6 are determined from the boundary conditions 
 

 
and 

 
which can be expressed as 

     (7) 
The maximum secondary bending moment is ( Fig. 1b ) 

  (8) 
and the maximum primary bending moment is ( Fig. 1c ) 

  (9) 
Respecting δ = w1(a), one finally obtains the theoretical moment amplification factor 

  (10) 
where 

  (11) 
  (12) 

  (13) 

  (14) 

3. DESIGN MOMENT AMPLIFICATION FACTOR 

The design moment amplification factor approximates the theoretical moment 
amplification factor in the form 

  (16) 

where - 0.2 ≤ d ≤ + 0.2 is the correction factor and Fc is the buckling load of the column 
(Petersen, 1982). 

The buckling load can be determined by using the equations (4) and (5) if one 
inserts F1 = 0, and by using the same boundary conditions (6) and (7). The condition of a 
nontrivial solution for the constants C1 to C6 produces a transcendental equation 

 (17) 

From the smallest root u0 of the equation (15), Fc can be determined by 
   (18) 

The theoretical moment amplification factor has been determined for various K1 and 
K2, and for the ratios alb corresponding 0.1 ≤ b/L ≤ 0.9. The range of values of K1 and K2 
has been determined through the analysis of FT diagram, M1 diagram and the first-order 
deflection of the beam-column. The determined values of the theoretical moment 
amplification factor have been approximated by the design amplification factor, defined by 
(15), for various values of d. 

(6) 
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Fig. 2. The buckling load Fc as a function of b/L. 

4. CONCLUSION 
 
In the above-mentioned analysis it turned out that for FIFC < 0.5 the theoretical 

moment amplification factor can be satisfactorily approximated by a design moment 
amplification factor 

   (19) 

For 0.25 ≤ b/L ≤ 0.90 the expression (18) gives the moment amplification factor 
which varies from the theoretical moment amplification factor within the range from -10% 
(for a small rigidity of the cylinder cover: K1 = 0, K2 = 0.1) to +10% (for a considerable rigidity 
of the cylinder cover: for K1 = 50, K2 = 0.001) and for  
0.5 ≤ b/L ≤ 0.9 the according variation is within the range from -2% to +10%. 
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