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Abstract : Condition Based Maintenance (CBM) enables the preemptive maintenance of systems that are 
subject to incipient faults and is, therefore, an indispensable attribute of robot actuator intelligence. This 
paper present aspects of a Decision Making (DM) method which facilitate actuator condition based 
maintenance and is called DM/CBM. Achieving effective maintenance could be of benefit to companies, 
which can increase profit by the reduction of maintenance costs, as well as to customers who can enjoy 
improvement of service quality. 

 
1. INTRODUCTION 
 

 Legacy condition monitoring methods are founded on the premise that a fault is any 
significant deviation from nominal system behavior. Consequently, legacy systems are 
often to blame for “false alarms” that arise from system changes that are significant, but do 
not compromise the system’s ability to meet its task demands. DM/CBM is predicated on 
the concept of a functional fault—system degradation that endangers current or projected 
future task execution. In order to do this, DM/CBM utilizes performance envelopes to 
characterize both actuator capabilities and actuator task demands. An underlying sensor 
based model of the actuator is used to continuously update the actuator performance 
envelope, which is compared with the task envelope to provide a means for detecting 
performance-compromising faults. Once refined and tested, DM/CBM may be integrated 
into an embedded software framework known as AMOS (Actuator Management 
Operational Software) as a key contribution to further enhance the actuator’s intelligence. 
 The standardized actuators are the fundamental building block for modular robots, 
aircraft, submarines, and general industrial automation [10]. Demand for enhanced 
reliability and cost-effectiveness of standardized actuator modules utilized in open 
architecture intelligent systems calls for the implementation of distributed Condition Based 
Maintenance techniques [10]. CBM is a supervisory control algorithm that is solely 
dedicated to monitoring machine systems or processes in order to detect and diagnose 
incipient faults at an early stage. By providing an early warning of potential failures, 
preemptive maintenance may be carried out rather than reactive maintenance [4]. The 
underlying principle upon which CBM operates is that machines provide advanced warning 
of failure through symptomatic performance degradation. By detecting and identifying 
these symptoms early in their onset, maintenance may be carried out before system safety 
and availability are compromised. Since CBM is concerned with faults that develop slowly 
over time, we restrict our attention mostly to incipient faults.  
 When system engineers set out to design a robot, they typically use as many off-
the-shelf components as possible. When selecting actuators, they first formulate the 
performance specifications that the task requires, and then they search through 
manufacturer specifications to find an actuator that meets or exceeds the required 
performance specs. DM/CBM uses a similar logic, but instead of deciding which actuator 
to buy, the decision is whether or not to replace a degraded actuator with a healthy one 
based on its assessed condition. It is hypothesized that this method of condition 
assessment and fault related decision-making will not only provide a quantitative estimate 
for the condition of an actuator, but will also reduce false alarms. 
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2. Decision-Making Based Condition Based Maintenance 
 
 The DM/CBM algorithm is a detailed in Figure 1 [8]. 

 
Figure 1.  DM/CBM detailed flow chart [8]. 

 Before starting the DM/CBM process, a set of task performance criteria must be 
selected (e.g. torque and speed). At a minimum, the performance criteria used for 
DM/CBM should match the criteria that were originally used in selecting the actuator. The 
selected performance criteria are the axes of the performance envelope describing the 
actuator’s Nominal Performance Condition (NPC) (nominal condition is used to refer to the 
condition at purchase), Assessed Performance Condition (APC) and its Required 
Performance Condition (RPC).  
 The first part of the DM/CBM flowchart invokes the same principle of analytical 
redundancy that general model-based FDI (Failure Detection and Isolation) strategies use. 
A state/parameter estimator based on an accurate nonlinear actuator model is assumed to 
be available and convergent. This describes the sensor inferred model, which is the first 
block in the flow chart. For the general class of incipient faults, the sensor inferred model is 
used to map dynamically changing sensor data to a fault-sensitive model of the actuator, 
which reflects the actuator’s current condition. The sensor inferred model block 
continuously receives sensor signals that measure the inputs and outputs of the actuator, 
updating the estimate of the model parameters. 
 The output of the sensor inferred model block is the vector of parametric constants 
that characterize the actuator model. Although the actuator model is time invariant, 
incipient faults cause gradual changes in the model parameters. Depending on the type of 
parameter estimator used, a forgetting factor will be needed to track the model parameters 
in a quasi-static manner.  
 The word condition is ambiguous in the literature, at least in the context of incipient 
faults (in the case of abrupt faults, the condition may be assessed in a binary way: fault or 
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no fault). In response to this ambiguity, were used performance envelopes for defining 
condition. Based on the observed model with its continuously updated parameters, the 
condition of the actuator is updated. This condition is called the Assessed Performance 
Condition (APC). Specifically, the model is used to generate an updated envelope for all of 
the pertinent performance criteria. By allowing the operator to choose which criteria are 
important, the condition of the actuator is assessed in a way that is meaningful to the 
operator and is useful for making decisions. 

Assessed Performance Condition (APC) is the performance envelope, whose axes are 
the task-specific performance criteria (chosen by the operator), describing the most current 
range of operating capabilities for the actuator.  The threshold for declaring an abrupt fault 
is usually determined using a statistical threshold, a level of confidence. This is not the 
case for incipient faults which are gradual in their progression. There is no accepted way to 
determine when a fault is too big to ignore. 
 Continuing to move through the flow chart, health margin generation is the next 
step. At this point, the condition has been assessed, but it is still useless for decision-
making without some reference for comparison. The health margin results from comparing 
the APC with the Nominal Performance Condition (NPC) and the Required Performance 
Condition (RPC) as the system degrades. Each of these envelopes is defined next: 
 Nominal Performance Condition (NPC) is the performance envelope, whose axes 
are the task-specific performance criteria (chosen by the operator), describing the range of 
operating capabilities for the actuator when it was brand new (i.e. zero degradation). 
 Required Performance Condition (RPC) is the performance envelope, whose axes 
are the task-specific performance criteria (chosen by the operator), describing the 
minimum range of operating points necessary to meet the task requirements. 
 The operator can generate an RPC by scaling each dimension of the actuator’s 
nominal performance envelope and will be called a vector RPC. If the operator is willing to 
provide a matrix of information about the RPC, then very meaningful residuals can be 
generated and will be called array RPC. While an array RPC offers the best results for 
CBM decision-making, it comes at a much higher price than vector RPCs. In order to define 
an array RPC, the operator must either possess historical process data or simulation data 
that fully defines how an actuator is used for the specific application. 
 Recalling that we desire to meet the prerequisites for a decision-making algorithm 
given by [5], the RPC fulfills the first point–the task description. The RPC is analogous to 
the task description in the decision-making protocol because it provides a quantitative 
description of the task to be performed. 
 Figure 2 shows, conceptually, the components needed to compute the health 
margin for a generic system. The outermost envelope is the NPC envelope. This 
represents the condition of the system as it was when it was brand new (i.e. zero 
degradation). The APC is the envelope that is interior to the NPC. The dark envelope in 
the center is the RPC, which bounds the task demands. The three curved lines represent 
the trajectory of a single point, which was originally located on the NPC, but as a result of 
degradation, moves with time. Each of the lines is labeled ‘FM’ to indicate ‘failure mode.’ 
Each failure mode has its own unique trajectory associated with every point on the NPC. 
Note that while failure modes 1 and 2 result in a breach of the RPC (a functional fault), 
failure mode 3 never does. Furthermore, if two failure modes act simultaneously, their 
trajectories will be combined (though probably not linearly). This is illustrated in Figure 3. 
 Ideally, the health margin would be calculated by taking the ratio of the remaining 
length along the trajectory to the total length along the trajectory. This ratio can be 
calculated at each point on the NPC, so the health margin is an array of ratios (if the health 
margin was captured for all time as the system degraded (due to a single fault), it would be 
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a vector field). Since it is not scalar, it must be further distilled for decision making. 

 
Figure 2. Trajectories for Individual Failure [8]            Figure 3. Trajectory for a Simultaneous Failure [8] 

 For the ideal definition of health margin to be viable, the failure mode and 
corresponding trajectory must be known when the machine is in its nominal condition. 
Since the failure mode(s) of a real life machine is uncertain, a means of estimation is 
required if health margin is to be calculated. Figure 4 illustrates the estimated health 
margin calculation that is suggested by the authors. Here the failure mode trajectory is 
ignored in favor of the direction normal to the RPC. 

 
Figure 4. Approximated Health Margin Graphic [8] 

 In order to make the decision about whether to declare an actuator healthy or faulty, 
decision-making criteria are needed. These criteria are categorized such that they are 
aligned with the operator’s chief concerns: Can the actuator provide the desired 
performance at present, what is the estimated time before it can no longer provide the 
desired level of performance, and how certain are the estimates about the former criteria? 
In accordance with each respective concern, the decision criteria have been named % 
Health Margin (%HM), Remaining Useful Life (RUL), and % Certainty. Specific quantitative 
definitions of each decision criteria type will be considered next. Although these criteria 
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definitions are intended to encompass as many actuator applications as possible, there 
are bound to be applications (unknown to us at this time) that would be better served by an 
application-specific criterion. Additions to these definitions are expected for that reason. 
 For calculating the health margin data (which took the form of an array), two 
choices have been identified for varying the definition of % health margin. First, the way 
the RPC is defined changes the calculated %HM criterion. Second, the way in which the 
multidimensional health margin data is condensed (to a scalar) affects the %HM criterion. 
The result of this process shall be referred to as a norm (2). They are merely norms in the 
sense that a scalar value results from an operation on a multidimensional matrix of data. 
 Remaining Useful Life (RUL) is a prognostic estimate of the time before %HM 
reaches zero. Ideally, this would be calculated by isolating which fault is occurring and 
then using historical knowledge (from a data base or a model) to relate the present 
condition and anticipated operating regime to the future trajectory of that particular fault-
related condition. However, at this early stage in the maturity of DM/CBM, a much less 
demanding (and less accurate) approach will be taken. As a first approach, the current 
%HM and its time derivative are used to make a linear approximation of the time before 
%HM reaches zero. 
 Figure 5 [8] shows a hypothetical example of the progress of the assessed 
condition as the system degrades. Each curve represents the assessed condition of the 
system calculated on a constant time interval. This corresponds to Figure 6 [8], in which 
minimum %HM decreases toward zero. Each red do marks the minimum %HM at each 
time the condition is assessed. In this example (not in general), the minimum health 
margin decreases rapidly at first, corresponding to the large gaps between red dots, and 
then slows slightly as it approaches 0% health margin, corresponding to the smaller gaps 
between the red dots. 

 
Figure 5. Assessed condition degradation [8].                  Figure 6. Minimum %HM degradation [8]. 

  As DM/CBM matures, time/operating regime models of prominent failure modes 
could be included to increase the accuracy of the estimated time to failure. Inclusion of 
these models would be especially helpful for fault modes that occur non-linearly. Besides 
the accurate estimation of the condition of a system, the fault prognosis (RUL) is the most 
important piece of information in the fault decision process. Statistical methods are needed 
to establish the certainty for DM/CBM. Statistical certainty often serves as the only 
threshold for detecting/deciding if a fault has occurred [1]. Statistical certainty is 
augmented by %HM and RUL in making the fault decision. This characteristic improves 
the decision logic so those fault magnitude and fault prognoses are taken into account.  

 A CBM method capable of monitoring a broad variety of systems and subsystems 
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would be preferable to a method that works for special cases only. Persistent activity is 
basically the requirement that the system inputs be non-stationary and that they excite all 
of the modes of the model. Though this is necessary in the sensor inferred model stage, it 
is even more important for the condition assessment stage which is considered next. 
 Proceeding to the condition assessment stage, persistent activity must exist for this 
process to work fully as well. If the system is persistently active, then the performance 
criteria will vary substantially over the range of operation. The reason that performance 
envelopes are used in the first place is that they capture performance degradation over the 
entire operating regime, and not just at the local point of operation. For steady state 
systems, the single-point residual methods used by the FDI are more than adequate. 
 Moving on to the health margin generation stage, one further requirement is added. 
If the RPC is equal to or greater than the NPC of the system, then even the slightest 
degradation will trigger the fault decision. The RPC is vital for the decision-making process 
and the better RPC is known, the more the final fault decision can be trusted. The %HM 
criterion should be selected so as to avoid singularities near zero. The minimum RUL must 
not be large in comparison to the rate of system degradation. Is no benefit applying 
DM/CBM to a system whose failure modes occur more rapidly than the maintenance crew 
can respond. 
 
3.   SUMMARY 
 
 Prognostic information is the most important information provided by any CBM 
system because it enables the prediction of future performance deficiencies, and thus 
facilitates preemptive maintenance. In DM/CBM, RUL is the prognostic decision criterion. 
Without the capability to forecast the future condition of the actuator, DM/CBM would be 
little more than a cumbersome fault detection method. Real-world fault progression is 
completely dependent on the failure mode, which is often state dependent or at least 
nonlinear in time. The best way to cope with this would be to make a diagnosis about the 
dominant failure modes and then use archived or expert prognostic models to predict the 
implications for the future fault progression.  
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