

A SOFTWARE FRAMEWORK FOR WORK CELL ARCHITECTURE

Ilie Octavian POPP, Ioan BARSAN
“Lucian Blaga” University of Sibiu, Faculty of Engineering “Hermann Oberth”
Departaments of Machine and Machinery, Emil Cioran St. no. 4, Sibiu-2400

E-mail: ilie.popp@ulbsibiu.ro, Tel. 0269-216062/454

Key words: FMS, work cell controller, architecture model, software.

Abstract: This paper present a framework for organizing resources consisting of hardware devices (such
as machine tools, robots, conveyors, etc) and software modules such as (cell controller, monitoring software)
in a CIM environment has been developed. In this section, we focus on the basic building blocks of the
framework.

1. INTRODUCTION

The problem of supervisory control/synchronization in a flexible-manufacturing

environment is one of the most difficult problems designers’face in the conceptualizing of a
Flexible Manufacturing System. It is clear that manufacturing flexibility induces complexity.
For example, consider a Flexible Manufacturing System that supports ten different job
types, which has ten different machines, each with a buffering capacity of ten. To design
and implement a supervisory controller that allows for reconfiguration of resources is a
challenging problem. It requires the support provided by a reference architecture model
that facilitates the concept of “Plug and Play”.
As explained previously in the section on Resource Models, the resources are classified
into four different categories based on their functionality viz.

1) Storage
2) Ports
3) Processors
4) Transportation

As defined earlier, a work cell is a composite member composed of some of these
basic resource. Figure 1 describes how recursive composition can be used so that the
same framework could be used to build a simple work cell composed only of basic
resources (leaf nodes) or a complex work cell that is defined recursively in terms of other
work cells. Each of the resources in the work cell (including the work cell) is a CORBA
object so that it can plugged into a distributed environment with minimal ease. Though the
resources of a work cell have been classified into the four basic resources, it is possible to
model systems where such a strict taxonomy is not applicable. Some sample examples on
how to model some typical systems are given later in the paper.

ANNALS of the ORADEA UNIVERSITY.

Fascicle of Management and Technological Engineering, Volume VI (XVI), 2007

 1531

2. WORK CELL BASIC RESOURCE.

Figure 1: Plug-in supervisory controller used in the work cell (strategy pattern)

Figure 2 captures the use of the strategy pattern in the work cell. The work cell controller
uses different structural control policies depending on the work cell configuration and job
routes. The four different controllers that could be plugged into the work cell are:

Figure 2: Work cell – Resource Part Hierarchy (Composite Pattern)

1. SCP1 - Used in the absence of counter-flow jobs. Deadlock avoidance is trivial. Suffices
to check for capacity availability on device.

ANNALS of the ORADEA UNIVERSITY.

Fascicle of Management and Technological Engineering, Volume VI (XVI), 2007

 1532

2. SCP2 - Used in case of a circular flow and shared input/output. The total number of jobs
has to be less than the sum of capacities of all the resources at all times.
3. SCP3(SCP_RAS) - Optimal One step look ahead policy. Used when the capacity of the
device is greater than one (or belongs to the special class of RAS's defined in [3], [4].
4. SCP4(SCP_Decompose)- Default case. Handles the most general case by route
decomposition.

The use of such a design enables us to plug different supervisory controllers into the
work cell server. The new controller has to be derived from the abstract class
SCPController. That is to say, the controller has to have the same interface as the
SCPController so that the rest of the classes can be reused as is.

The OMT diagram in Figure 3 explains the design of the device drivers for the devices.
There might be a need to plug different device simulators into our architecture. However,
the interface of each of these simulators might not be available to the resource module
expects. We therefore define a device driver object that acts as an adapter for the
simulator objects. The device driver publishes the interface expected by the resource
module and is linked with the simulator so that it can make the appropriate calls on the
simulator for each of its method. This requires that new device drivers have to be written
for device simulators that follow their own proprietary protocol. This design offers us more
flexibility and more reusability of our framework.

Figure 3: The OMT diagram for the device driver classes (Adapter pattern)

ANNALS of the ORADEA UNIVERSITY.

Fascicle of Management and Technological Engineering, Volume VI (XVI), 2007

 1533

Note the use of a Finite State Automata class in Figure 4. All transactions and
messages in the work cell as well as resources are derived from a state Machine. This
implies that all the resources have a strict notion of their current states and all the events
are state driven. The use of a formal FSA object helps in reducing the bookkeeping that
have to be otherwise kept at the server side.

Figure 4: The OMT diagram for the transaction class and the received message used in the work cell

and the resource server class

3. MODELING WORK CELLS AND MANUFACTURING SYSTEMS

The steps involved in modeling work cells and manufacturing systems, using this

framework, are described in [4], [5].
• The configuration files for each of the basic resource has to be written. These files define
the capacity of the resource, the capabilities of the machine (programs, configurations)
and the group to which it belongs amongst other things.
• The configuration file for the work cell has to be written. This file defines all the resources
that a work cell is composed of. In addition, this configuration file contains defines the
connectivity information and the various routes followed by the different job types.
• To attach machine simulators to each of the basic resources, device driver files have to
be written that translates commands from the module controllers to the simulators and vice
versa.
The fields that are mandatory fields in a configuration file are the following:
• The name used to locate the resource in the distributed environment.
• The type of the resource
• The serverkind field that serves as a de-multiplex key.
• The (buffer) capacity of the resource.
• The port numbers in a resource
• The total number of setups supported by the resource.
• The programs supported in each setup. A program Id (PID) and a filename describe a
program.
The additional fields that have to be described in a configuration file for a composite
member are described below:
• The members (resources) that the work cell is composed of.
• The capacity of each of the resource.

ANNALS of the ORADEA UNIVERSITY.

Fascicle of Management and Technological Engineering, Volume VI (XVI), 2007

 1534

• The in-ports and out-ports of each of its resource.
• The connectivity information that describes how the ports of the resources are connected
to each other.
• There are two keywords used in defining the connectivity information. 'TO' is used to
describe one-way connectivity between ports while 'ONTO' means that the connectivity
between the ports is two-ways.
• The different job types (routes) supported in each configuration. A route is described by a
sequence of stages each stage defined by the resource that the job needs at that stage.
The device drivers for a storage type and a processor type have been described above.
The steps involved in defining a device driver are given below:
• Define the ports of the device.
• The link of the mechanism associated with the port.
• The location of the port with respect to the link co-ordinates.
• Define the programs associated with accept, remove, prepareAccept and
prepareRemove commands at various ports.
• Define the mapping between programs IDs (PID) and the programs that would be run by
the devices.
However, the port maps have to be defined differently if the capacity of the device is
greater than one. The program associated with the accept, remove, prepareAccept and
prepareRemove commands are indexed both by the port and the buffer ID.

4. TEST CASES MODELED USING THIS ARCHITECTURE

Case: A simple work cell composed of base resources has been tested successfully using
our architecture. The work cell consists of a three-axis machine tool (a unit processor), a
pallet changer and an input/output buffer (See Figure 5). The pallet changer is fed
jobs/parts from the work cell buffer and it feeds the jobs into the machine tool. The pallet
changer picks up a processed job from the machine tool and transfers the job into the
output buffer of the work cell.

In the above setup, the capacity of the work cell is four while the processor is of unit
capacity. In such a configuration, the interactions between the pallet changer and the
processor are dynamic in the sense that they are dependent on the processing time spent
by each job on the machine tool and the time at which different jobs enter the system. The
controller of the work cell automatically allows/disallows different transitions thereby
avoiding conflicts.

Figure 5: Schematic sketch of a work cell consisting of a pallet changer and a machine tool.

ANNALS of the ORADEA UNIVERSITY.

Fascicle of Management and Technological Engineering, Volume VI (XVI), 2007

 1535

5. CONCLUSIONS

The use of automatic synthesis of supervisory controllers allows a high degree of
flexibility in the system. Whenever there has been a significant change in the system
configuration (when new job routes have been defined or when resources have been
added/removed), the control-laws are recalculated and re-synthesized. We have
suggested hierarchical synthesis as a strategy for rapidly configuring large systems. In this
paper, a methodology for formally modeling hierarchical resource allocation systems is
developed. A distributed hierarchical control policy for ensuring deadlock free behavior in
such a system has been proposed. In paper, we apply this methodology to model a FMS
setup under the framework of our architecture.

The software module we have implemented based on this architecture is highly
configurable to suit the needs of a variety of manufacturing environments. A CORBA
based framework has been used to develop the various object modules. This gives us the
added benefit of being able to run the application across multi-platforms (operating
systems).

Furthermore, the use of distributed object technology to implement the system
enables us to run each resource module as a distributed object/server on a computer
node. It is possible to access the control panels associated with each resource from a
separate computer and this allows the operator to access the system at different control
levels (the resource or the work cell).

References:

[1] A d l e m o A., and S.-A., Models for Specification and Control of Flexible Manufacturing Systems,
Technical Report, School of Electrical and Computer Engineering, Chalmers University of Technology,
Goteborg, Sweden, 1997.
[2] L a w l e y M., Structural Analysis and Control of Flexible Manufacturing System, PhD Thesis, University
of Illinois at Urbana-Champaign, 1995.
[3] Popp, I., Consideration regarding model Architecture for Scalable Flexibility in Manufacturing,
International Conference on Manufacturing System, Buletinul Inst. Politehnic din Iaşi, publicat de
Universitatea Tehnică “Gh. Asachi”, Tomul LI, secţia Construcţii de maşini, Iaşi, 2005.
[4] Popp, I., Consideration regarding a Resource Models and Job Models for Scalable Flexibility in
Manufacturing, Acta Universitatis Cibiniensis, Buletin ştiinţific al Univ. “Lucian Blaga” din Sibiu, seria Tehnică,
vol. LII, ISSN 1583-7149, p. 77-80, Sibiu, 2005.
[5] Popp I. - Consideration regarding a Workcell and Resource Model implementation in FMS, Annals of the
Oradea University, Fascicle of Management and Technological Engineering, CD-ROM Edition, Oradea, 2006
[6] R e v e l i o t i s S., Structural Analysis and Control of Flexible Manufacturing Systems with a Performance
Perspective, PhD Thesis, Univ. of Illinois at Urbana-Champaign, 1996.
[7] W y n s, J., B r u s s e l, H., V a l c k e n a e r s, L., WorkStation Architecture in Holonic Manufacturing
Systems, Cirp Journal on Manufacturing Systems, Vol. 26, 220-231, (1996).

ANNALS of the ORADEA UNIVERSITY.

Fascicle of Management and Technological Engineering, Volume VI (XVI), 2007

 1536

