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Abstract 
 
This paper  presents the optimization of a steel wedge-shaped  hopper. The flat  wall of the hopper  on the 
outer side  is stiffened with L-section ribs which run paralel to one another. We search for the optimal set of 
the design variables, that makes  the objective function  minimum. The number of design variables is 4 plus 
the number of ribs. The objective function is the production cost of the structure. We analyse the whole 
structure with finite element method and use genetic algorithms to find the solution. 
 
1. INTRODUCTION 
 
Hopperrs are widely used in the industry for temporarily storing bulk materials.  Different 
hopper shapes can be chosen for the same purpose and in some cases the wedge shape 
is more advantageous  than the conical or pyramidal shape. The wedge shape requires 
usually less headroom than the other shapes, and less sensitive to the flowability 
properties of the bulk material. The wedge shape has drowbacks as well. If the outlet 
requires a gate it is more expensive than in the other cases. 
In this paper we suppose that a wedge-shaped hopper is chosen and the main dimensions 
have been determined. 
Using ribs makes it possible to apply thin steel plates and it reduces the material cost, on 
the other hand ribs increase welding costs. This fact means that the cost minimazition of 
such a structure is an important engineering task. 
We examine the whole structure considering the connections of the parts. This kind of 
detailed analysis can be carried out only numerically. We use finite element method which 
provides sufficiently precise results but computationally can be expensive. The analysis of 
the structure may be repeated some thousand times. 
Our goal with the optimization is to determine the chosen design variables so that the 
whole production cost may be minimum. 
 
2. CONSTRUCTON OF THE HOPPER 
 
The examined hopper (Fig. 1) is made of common structural steel and the parts are 
welded together. We use standard plates and rolled sections. The structure is bordered by 
two rectangular and two trapezoidal walls. These walls are stiffened with L-section ribs. L-
section provides effective stiffening for the walls, it is not sensitive to plate buckling and 
can be connected easily at the corners. We use non-continuous welding to connect the 
ribs to the walls. The open L-section is advantageous from corrosion respect compared to 
closed sections. The upper edge of the hopper has a U-section rim. It protects the edge in 
case of loading and the plate legs are also welded to this rim. The bottom outlet opening 
has an L-section rim. The gate can be bolted to this rim. These L-sections are connected 
together with plates in four places. This provides an effective stiffening and does not 
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hinder the flow of the bulk material.The legs of the hopper are made of plates, too. These 
are inclined to a little extent in order to provide enough room for the support structure. 
 

 
Fig. 1 

 Wedge-shaped hopper stiffened with L-section ribs 
 
3. THE COST FUNCTION 
 
The cost function of the structure is set according to reference [2]. This contains the 
material cost and the manufacturing related costs. Amortization, transportation, site 
erection costs are not included. The cost function is: 
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where K is the whole production cost, Km is the mass cost, Kf  is the manufacturing cost, 
km=0,5-1 $/kg is the unit mass cost for structural steel, ρ=7,85 kg/dm3 is the steel density, 
V is the structural material volume, kf=0-1 $/min is the unit manufacturing cost, Ti is the 
required time for the different manufacturing phases. 
The unit costs depend mainly on the development level of the country where the 
production is carried out. Considering the above value limits the rate kf/km can be between 
0 and 2 kg/min. Some typical values for normal structural steel are the following: 

− Manufacturing cost is zero, optimization for minimum weigt: kf/km=0. 
− Developing countries, cheap labour: kf/km=0,5. 
− Western-Europe, expensive labour: kf/km=1-1,5. 
− Japan, USA, expensive labour: kf/km=2. 

 
We use the cost function in the following form: 
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We suppose that the rate kf/km is the same for all manufacturing phases. 
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The manufacturing times are the following: 
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 where T1 is the time for preparing welding, T2 is the actual welding time, T3 is the time for 
additional manufacturing activities at welding (changing electrode, slag removal, burr 
removal), T4 is the time for plate aligning, T5 is the time for surface preparation before 
painting (cleaning, rust removal, sand blasting), T6  is the painting time, T7 is the time for 
plate cutting and edge grinding. 
 
4. DESIGN VARIABLES AND FIXED DATA 
 
Design variables are the parameters of the structure which can be changed during the 
optimization. These parameters are the following: 

− Wall plate thickness (standard); 
− Size of the L-section ribs (standard); 
− Size of the L-section at the outlet (standard); 
− Periodicity of the rib welds (number between 0,25 and 1); 
− Position of the ribs (distance from the upper edge). 

 
Since plate thickness and L-section sizes are chosen from standards we consider the 
design variables as discrete variables. 
During the optimization we set the number of rib levels but this can be chosen arbitrarily. 
The other dimensions of the structure have been determined from a previous calculation 
and these are fixed. The numerical calculation refers to a hopper with a capacity of 7 m3. 
The main dimensions are shown in Fig. 2. The density of the bulk material is 1800 kg/m3, 
the rate kf/km is 1. 
 

 
Fig. 2 

 Main dimensions of the hopper 
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5. CONSTRAINTS 
 
Geometric constraints: 

− We set the minimum distance between the ribs and between the ribs and the edges 
of the hopper. 

Mechanical constraints:: 
− The equivalent stress may not exceed a limit stress (200 N/mm2).  
− The shear stress in the welds of the ribs can not exceed a limit stress (141 N/mm2). 
− The deflection of the plates may not exceed a limit deflection that is 2.5-times the 

plate thickness. 
 
The constraints are taken into consideration in a way that we exclude the inconvenient 
individuals from the population and generate new ones. 
 
6. MECHANICAL MODEL 
 
From mechanical point of wiev we handle the hopper as a shell structure. Load is derived 
from the weight of the bulk material and this varies linearly according to the height of the 
stored material. This is determined according to the so called earth pressure theory. The 
dead load is considered, too. The hopper is supported by joint connections at the four legs 
in the middle of the foot plates. Since the hopper has two symmetry planes it is enough to 
examine the one fourth of the whole structure if we apply symmetry conditions for the the 
proper edges. 
 
7. COMPUTER PROGRAMS 
 
We use two commercial programs for the numerical calculations. Genetic algorithms and 
other algorithms run in MATLAB environment. The finite element analysis is carried out by 
COMSOL. These two programs have direct connection. COMSOL can be controlled from 
MATLAB. The main functions of the genetic algorithms were created by Pohlheim [3] and 
we extended these algorithms to handle constraints. 
 
8. GENETIC ALGORITHM 
 
Genetic algorithms are stohastic search methods. The structure of a genetic algorithm is 
shown in Fig. 3. 
 

 
 

Fig. 3 
Structure of a genetic algorithm 
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9. RESULTS OF THE OPTIMIZATION 
 
We have carried out the optimization in case of three hoppers which differ in the number of 
rib levels. Fig. 4 shows the deformations and the pattern of equivalent stresses of the 
hoppers which can be considered as optimal ones. 
 

 
 

Fig. 4 
Optimal hoppers 

 
The cost components are shown in Fig. 5. The cost unit is kg according to equation (2). 
 

Number of rib levels Cost 
components 1 2 3 

1 1233 976 1074 
2 314 306 347 
3 1628 944 1055 
4 181 197 212 
5 576 627 674 
6 102 96 100 

Sum 4036 3146 3462 
 

Fig. 5 
Cost components 

 
Names of the cost components are: material (1), welding preparation (2), welding (3), 
surface preparation (4), painting (5), plate cutting and edge grinding (6). 
Comparing the costs of these optimal solutions it can be seen that using 2 rib levels results 
in the  least cost. In this case the values of the design variables are the following: wall 
thickness is 5 mm, sizes of L-section ribs is 100x100x10, sizes of L-section at the outlet 
opening is 50x50x5, the parameter  value for the non-continuous welds at the ribs is 0.4, 
the rib level distances from the top of the hopper are 800 mm and 1390 mm. The relative 
costs of the three hoppers are shown in Fig. 6. 
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Fig.  6 

Costs and cost components 
 
The diagram on the left in Fig. 7 shows the best objective values in case of each 
generation at 2 rib levels. As the number of generation grows the searching process finds 
better and better individuals. The calculation ran up to 50 generation. The diagram on the 
right shows the costs of the 20 individuals in the last generation. 
 

 
 

Fig. 7 
 Change of objective values at 2 rib levels 

 
10. SUMMARY 
 
The solved problem shows that with the combination of finite element method and genetic 
algorithms even complicated structures can be optimized. The way of constraint handling 
has a great effect on the efficiency of the search process, so additional research is needed 
in this direction. 
This paper was supported by Regional Knowledge Center of University of Pannonia. 
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