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Abstract: In this paper, reduced order controller for high-order dynamical systems will be obtained by 
matching a subset of the frequency and power moments. High and low frequency moments are being 
simultaneously matched. A straightforward approach to constructing reduced-order models was obtained by 
explicitly computing 2r moments of the original system, using numerical algorithms implemented in MATLAB. 
 
1. INTRODUCTION 
 

The design of low-order controllers for high-order plants is a challenging problem, 
both theoretically as well as from a computational point of view. 
Designs for control of large systems and structures are often based on mathematical 
models constructed by finite element techniques together with experimental data, and so 
frequently, they yield large state-space dimensions (on the order of tens of thousands to 
millions) upon discretization. Advanced controller design methods such as LQG/LTR loop-
shaping, H2/H∞ control design, µ-synthesis and linear matrix inequalities (LMIs) typically 
produce controllers with orders comparable to the order of the plant. Highly accurate 
models desired for feedback control often lead to high-order controllers. These high-order 
controllers are not practical for real-time applications. It is an important problem to 
consider how to achieve reduced-order models and controllers while maintaining the 
desired performance during real-time implementation.  

In general, however, the order of these modern controllers tends to be too high for 
practical use. For many reasons, simple controllers are preferred over complex ones. 
Thus, model reduction methods capable of addressing controller reduction problems are of 
primary importance to allow the practical applicability of modern controller design methods 
for high-order systems. 
 
2. CONTROLLER ORDER REDUCTION METHODS 
 
2.1. Projection  methods 
 

Consider a linear, continuous time- invariant (LTI) large-scale dynamical system or 
plant, single-input single-output (SISO) 
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where the state vector , and ( ) nt R∈x ( ) ( )ty,tu  are the scalar input and output, respectively. 
The transfer function is 
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( ) ( ) DBAIC +−= −1ssG ,  (2) 

 
and we can rewrite it as 
 

( ) ( ) ( )BCG sGsGs T
CB == ,  (3) 

where ( )sGB  and are the solution to the linear systems ( )sGT
C

 
( ) ( ) BAI =− sGs B  (4) 

( ) ( ) CAI =−ssGT
C  (5) 

 
and the model reduction problem becomes the one of finding approximate solutions 

 and  to ( )sG m,B ( )sGT
m,C ( )sGB  and ( )sGT

C , respectively, such that the Petrov-Garlekin 
conditions [8] are satisfied. In this case one can obtain the reduced-order models as 
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where W and V are the matrices that form the projector  with  rnTT ; ×∈= R WV,VWΠ

r
T IVW =  where rI  is the identity matrix of size r, and 
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The aim is to achieve reduced-order controllers that are guaranteed to stabilize the 
closed-loop system when implemented in a closed-loop framework using the original 
building structure as the large-scale plant. To this end, one considers the feedback control 
loop as depicted in Fig. 1, and a stabilizing high-order controller K(s), with closed-loop 
performance index defined as I (G(s),K(s)), one seeks a low-order controller Kr(s), with 

nr << , such that (G(s),Kr(s)) is a stable closed-loop system and I (G(s),K(s)) ≈ I 
(G(s),Kr(s)). 

The unifying feature of all model and controller reduction techniques is that they are 
obtained by means of a projection. This process applies to controller and the closed-loop 
system as well. 
 

Figure 1 Feedback configuration. 
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2.2 Frequency weighted model reduction 
 

Controller reduction problems are often formulated as special frequency weighted 
model reduction problems, where the frequency weights are chosen to enforce closed-loop 
stability and acceptable performance degradation, when the low-order controller is used in 
the original closed-loop system. 
Let G(s) be the transfer of an nth order time-invariant, continuous-time plant with state-

space realization  and let K(s) be a stabilizing high-order ( order) 

controller with state-space realization  .  
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The controller reduction problem is to seek a low order controller Kr(s) of order  knr <<  to 
replace K(s) such that the closed-loop stability and performance are preserved. The 
controller reduction problem can be recast as a frequency weighted model reduction if one 
regards the closed-loop system with Kr(s) replacing K(s) as being equivalent to that of Fig. 
2. It is known from [1] that Kr(s) is a stabilizing controller if 

o K(s) and Kr(s) have the same number of unstable poles and no poles on the 
imaginary axis; and 

o Either 
( ) ( )[ ] ( ) ( ) ( )[ ] 11 <+−

∞

−

Hr sssss GKIGKK  

            or 
( ) ( )[ ] ( ) ( ) ( )[ ] 11 <−+

∞

−

Hr sssss KKGGKI  

 
This can be thought as of a minimization of the weighted error given by 
 

( ) ( ) ( )( ) ( )
∞

− Hir ssss WKKW0  

 
where, to ensure closed-loop stability, one can choose the input and output weights as 
 

( ) IW =si ,  ( ) ( ) ( )[ ] ( )ssss GGKIW 1
0

−+=  , or 
 

( ) IW =s0   ( ) ( ) ( ) ( )[ ] 1−+= ssssi GKIGW . 
 
On the other hand, to preserve closed-loop performance, one can use a two sided 
weighting of the form 

( ) ( ) ( )[ ] ( )ssss GGKIW 1
0

−+=  

( ) ( ) ( )[ ] 1−+= sssi GKIW . 
Following the same structure as the Enns’s [2] frequency-weighted balanced reduction 
method, the reduced order controller can be obtained as in Proposition1 [8]. 
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Figure 2 Modified Feedback Configuration 

YLOV –BASED CONTROLLER ORDER REDUCTION 

oments matching method  

Krylov techniques are based on moment matching, where one attem
oefficients of a power series expansion of the transfer function for the
ed-order models [2]. 
 transfer functions are expanded in a Laurent series around a given
lex plane, C∈σ  then 
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e the coefficients denoted by are called moments of the system at a pim
arly, one obtains the moments of the reduced-order model as  . The
l-order reduction by moment matching is to match a given number of

 of the original and reduced-order transfer funct

rim

nl,l,...,,i,mri <<= 21
A straightforward approach to constructing reduced-order models can

xplicitly computing 2r moments of the original system, where r is th
ed-order model. Then, the frequency response of the reduced-order sys
rrespond to the selected moments. This can be viewed as a sel

icients for the numerator and denominator of the reduced-order tran
gh the solution of a linear system involving Hankel matrices.  
] and [7], based by Krylov’s subspace method and the moment expans
e achieved two numerical algorithms for model reduction which were im

LAB.  
In this paper we use these algorithms for obtain the controller orde

hing a subset of the frequency and power moments. Reduced order m
reserve transfer function equivalence will be obtained. 

 Matching low frequency moments guarantee that the steady-state v
rved. For instance, the steady-state value to a step response is match

ow frequency moment is matched (see example). High and low freque
e simultaneously matched. 

llustrative Example  

use of the model reduction procedures discussed so far will be illust
ple, where the dynamical controlled system is the third order stable 

transfer function: 
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Notice that this transfer function has a zero on the right half of the complex plane, 

hence it is non-minimum phase. First, three different reduced order models of order one 
have been produced using the techniques introduced in this paper. The bode diagrams of 
the full order model and the reduced order models is depicted in Figure 3. The impulse 
response and the step response are given respectively in Figure 4 (a) and 4 (b).  
All the obtained models and the H2 and H∞ norms of the model error have been obtained 
using Algorithm 1-3 [7].  
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Figure 3 Bode plot: magnitude and phase 
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Figure 4 Reduced order models 
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5. CONCLUDING REMARKS 
 

The problem of controller reduction in a closed-loop framework was presented 
using Krylov techniques. It was shown that one can obtain reduced-order controllers that 
approximate well the full-order controller and the full-order closed-loop systems in the 
neighborhood of specific frequencies or points in the complex plane.  

Matching the first q Markov parameters guarantee that the first q time moments of 
the impulse response are matched. The preservation of this feature is especially important 
in non-minimum phase systems. For instance, the response of a non-minimum phase 
system to a positive step might present at time t = 0 a negative derivative. This behavior 
can be captured by matching high frequency moments.  

Matching low frequency moments guarantee that the steady-state values will be 
preserved. For instance, the steady-state value to a step response is matched when the 
first low frequency moment is matched. High and low frequency moments can be 
simultaneously matched. 
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