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Abstract: In this paper we make a comparative study of recently proposed methods for incorporating closed-
loop system information into the plant and controller reduction process for large-scale systems. The aim is to 
obtain a systematic way to reduce the order of large-scale controllers using a reasonable amount of 
computational effort and storage that, involving efficient algorithms, would yield controllers feasible for real-
time implementations. 
 

1. INTRODUCTION 
 

In the context of control synthesis the determination of the model of the plant the 
reduced order model and the design of the control law are not independent problems.  

The model and controller reduction methods can be divided into two different 
classes [1]: Direct and Indirect. Figure 1 shows the direct method design from a high-order 
plant to a low-order controller. With direct methods, the parameters defining a low-order 
controller are computed by employing an optimization technique. With indirect methods, 
two design pathways are possible. A high-order controller can first be designed, and then 
a procedure can be used to reduce the controller complexity. In Figure 1, this pathway is 
illustrated in the upper right. Following a different procedure, a reduced-order plant can be 
found prior to the controller design, and then a reduced-order controller is designed for the 
reduced-order plant. In Figure 1, this pathway is illustrated in the lower left. There are 
many issues that arise with the indirect approach. In the overall design process, the plant 
model approximation is carried out at an early step of the design process, without the 
benefit of pertinent information about the low-order controller.  

As discussed in [3], a good approximation of the plant requires knowledge of the 
controller. It is important to understand that the problem of controller reduction (closed-
loop) is distinct from the problem of model reduction (open-loop), since it is after all, 
closed-loop performance that should be approximated.  

Recently, Antoulas, et al. [2], [4] proposed a method for incorporating closed-loop 
system information into the plant and controller reduction process for large-scale systems, 
using rational interpolation through the poles of the large-scale closed-loop system and the 
large-scale controller.  

Most computational methods currently employed for controller reduction [9] cannot 
effectively handle very large-scale problems that exhibit some sparsity. They frequently 
involve the solution of Riccati equations and linear matrix inequalities (LMI) in the 
controller reduction process. It is known that current methods exhibit computational cost 
associated with the algorithms on the order O(n3) − O(n6) operations, where n is the 
number of states, thus becoming impractical for large-scale applications [2], [4]  

A systematic way for reducing the order of large-scale controllers using a 
reasonable amount of computational effort and storage, that is, involving efficient 
algorithms, would yield controllers feasible for real-time implementations. 
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Figure 1 Direct and indirect Approaches for model and controller reduction 
 
2. MODEL REDUCTION PROBLEM 
 

Given a dynamic system model G of usually high order n, a model reduction method 
is a procedure that yields some approximate model Gr of order nnr << . We note that by 
abuse of notation, both the underling dynamical system and its transfer function (TMF) are 
denoted by .  The quality of the approximation is usually evaluated by looking at the 
model reduction error, that is, the signal obtained as the difference between the outputs of 
the original system and the outputs of the reduced order model driven by the same input 
signal. The goal is to produce a low dimensional systems that has similar response 
characteristic as the original system with far lower storage requirement and evaluation 
time. The resulting reduced-order model might be used to replace the original system as a 
component in a large simulation or it might be used to develop a low dimensional controller 
suitable for real time applications. 

( )sG

The unifying feature of all model and controller reduction techniques is that they are 
obtained by means of a projection. This process applies to controller and the closed-loop 
system as well. 
Also, for an efficient reduction algorithm, one has to guarantee that: 

o the dimension of reduced-order model is nr << ; 
o the behavior of reduced-order model approximates the original with certain 

accuracy, i.e., there is a small error bound on ( ) ( ) ∞− ;r tt 2yy ; 

o the procedure is computationally stable and efficient. 
Consider a linear, continuous time- invariant (LTI) large-scale dynamical system or 

plant, single-input single-output (SISO) 
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where the state vector ( ) nt R∈x , and ( ) ( )ty,tu  are the scalar input and output, respectively. The 
transfer function is 
 

( ) ( ) DBAIC +−= −1ssG ,  (2) 

 
In model reduction we are faced with the problem of finding a reduced-order LTI system 
 

( ) ( ) ( )ttt rrrr uBxAx +=&   
( ) ( ) ( )ttt rrrr uDxCy +=   (3) 

 
of order nrr <<, , and associated TMF  
 

( ) ( ) rrrrr ssG DBAIC +−= −1   (4) 

 
 which approximate such that the following properties are satisfied: )(sG

• the predicted input-output behavior is close, e.g., 
∞

− rGG  or 2rGG −  are small. 
• system properties, like stability, passivity, are preserved. 
• the procedure is computationally efficient. 

 
3. METHODS FOR MODEL AND CONTROLLER ORDER REDUCTION 
 
3.1 Lyapunov balancing methods 
 

The most commonly used model reduction scheme is the so-called balanced model 
reduction, which was first introduced by Mullis and Roberts [6] and then in a systems and 
control framework by Moore [5] The main idea of this technique is a change of the state 
coordinate basis, called a balancing transformation, such that the controllability and 
observability grammians are both equal to some diagonal matrix, , where the 
magnitudes of the diagonal entries of the grammians reflect the contributions of different 
entries of the state vector of the system. This is achieved by simultaneously diagonalizing 
the reachability, , and the observability, , grammians, which are solutions to the 
reachability and the observability Lyapunov equations: 

dΣ

CG OG

 
0=++ TT

CC BBAA GG  ,   0=++ CCAA T
OO

T GG (5) 

 
Although balanced model reduction and its variants have nice system theoretic 

properties, such as preservation of stability and computation of an error bound, they 
become computationally prohibitive for large-scale systems. This drawback stems from the 
fact that they require dense matrix actorizations, such as solving two Lyapunov equations, 
and therefore the computational cost on the order O(n3) and storage of order O(n2) 
becomes impractical for systems of order n > 1000. 
Lyapunov balancing methods are now explored with applications to model reduction. 
This discussion will support the application of the concepts to the problem of closed-loop 
controller reduction by balanced truncation.  

Consider a stable LTI system model, G(s), given by its state-space realization and 
transfer function as described in Eq. (1).  
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The reachable, observable and stable system G(s) is called Lyapunov-balanced if ( )
pmpmmd ...diag III σσσ +++=Σ==

21 21OC GG  (7) 

e is a diagonal matrix with 
 
wher  dΣ qσσσ L>> 21 , and  are the multiplicities of im iσ ,so 
that 

7]: 

Proposition 1. Consider a stable system 

nmq =++L1 . m
The following results formally describe the balancing method [
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balanced realization rollability and observability grammians are equal a
dΣ== OC GG , which satisfy the following Lyapunov equations 

* (9) 

where  denotes the complex conjugate transpose of a matrix.  

Partitioning the balanced gramians as  with 
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and partitoning the balanced system accordingly 
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symptotically stable, balanced, minimal (controllable and observable) and satisfies  
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Equality holds if 

qmqIΣ σ=2 . 

In order to compute the simultaneous diagonalization of   and , several 
lgorithms have been proposed in the literature [2]. 

.2 Krylov-Based Model Reduction  
 

reduction techniques that rely on matrix-vector multiplication and that can be implemented  

 CG OG
a
 
3

SVD-based methods are not suitable for large-scale systems due to the use of 
dense matrix factorizations of O(n3) and storage of O(n2). As an alternative, model 
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iteratively in a numerically efficient manner become good choices for large-scale systems. 
Krylov subspace techniques provide this alternative [2]. 

The key ingredient of Krylov-based methods is moment matching. The idea is to 
match moments of the original higher-order model  by the moments of a lower-order 
model. This is achieved by iteratively constructing matrices that span certain (generalized) 
Krylov subspaces of A and B (controllability subspace) and/or AT and CT (observability 
subspace). 

Model reduction by Krylov techniques is not based on minimization, as with the 
SVD-based reduction methods. Instead Krylov techniques are based on moment 
matching, where one attempts to match the coefficients of a power series expansion of the 
transfer function for the original and reduced-order models 
 

( ) ( ) ( ) ( ) rrrrr ss;ss BAICGBAICG 11 −− −=−=  (11) 

 
If the transfer functions in Eq. 11 are expanded in a Laurent series around a given point in 
the complex plane, C∈σ , then 
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where the coefficients denoted by are called moments of the system at a point σ. im
Similarly, one obtains the moments of the reduced-order model as  . The main idea of 
model-order reduction by moment matching is to match a given number of moments as 

 of the original and reduced-order transfer functions. Several 
special cases of the moments can be determined depending on the location of the 
expansion points in the complex plane. In the case of 

rim

nl,l,...,,i,mm rii <<== 21

∞=σ , the moments are the well-
known Markov parameters of the system. The Markov parameters represent the values of 
the zero-state impulse response, or transfer function G(s), and subsequent derivatives of 
the impulse response at t = 0. Since matching the Markov parameters emphasizes the 
behavior at t = 0, the reduced-order model may be dominated by rapid decaying dynamics, 
not representing accurately the behavior at later time. In the frequency domain, once can 
show good matching of the frequency response of the system at high frequencies. A 
power series expansion can also be performed about σ = 0. In this case the reduced order 
model will be a good approximation to the steady-state response of the original system. As 
a summary, Table 1 is constructed based on Eq. (12). 
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Table 1 Expansions and moments to be matched. 
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A straightforward approach to constructing reduced-order models can be obtained by 
explicitly computing 2r moments of the original system as in  Table 1, where r is the size of 
the reduced-order model. Then, the frequency response of the reduced-order system is 
forced to correspond to the selected moments. This can be viewed as a selection of the 
coefficients for the numerator and denominator of the reduced-order transfer function 
through the solution of a linear system involving Hankel matrices. Unfortunately, numerical 
drawbacks of the explicit moment-matching can occur, such as ill-conditioned 
Hankel matrices, sensitivity of the partial realization, moment scaling, and the stability of 
the approximation. 
 
5. CONCLUDING REMARKS 
 

In state-space, truncation of the state vector is the “natural” choice for obtaining a 
reduced order model. The fundamental question is what states are “important” and should 
be kept in the reduced order model? In the context of model reduction, and given a state-
space realization (A,B,C,D) of order n, one might wonder whether the given realization is 
minimal in the sense that there exists no other transfer equivalent realization (Ar,Br,Cr,Dr) of 
order nr with nr smaller than n. The answer to this question relies on the concepts of 
controllability and observability. 

As discussed, a good approximation of the plant requires knowledge of the 
controller. It is important to understand that the problem of controller reduction (closed-
loop) is distinct from the problem of model reduction (open-loop), since it is after all, 
closed-loop performance that should be approximated.  
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