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Abstract: In this paper, we propose a population-based evolutionary multi-objective optimization approach 
based on the concept of Pareto optimality, in order to design an input shaft sub-assembly. The goals of the 
optimization were to minimize both the mass of the input shaft sub-assembly (including the mass of the 
pinion and the mass of the two tapered rolling bearing) and the bending deflection. In the actually optimal 
design problem solved in this work, three genes and eighteen constraints were taken into consideration. The 
Pareto optimal set was obtained by running a new genetic algorithm inspired by Non-Dominated Sorting 
Genetic Algorithm II (NSGA-II) implemented in Cambrian v.3.09 software which belongs to the Optimal 
Design Centre of Technical University of Cluj-Napoca. 
 
1. INTRODUCTION 
 

Multi-objective optimization (also called multi-criteria optimization, multi-
performance or vector optimization) can be defined as the problem of finding [5]: “a vector 
decision variables which satisfies constraints and optimizes a vector function whose 
elements represent the objective functions. These functions form a mathematical 
description of performance criteria which are usually in conflict with each other. Hence, the 
term optimize means finding such a solution which would give the values of all the 
objective functions acceptable to the designer.” In these terms, we want to solve multi-
objective optimization problems of the form: 

Minimize: 
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which satisfy (2), the particular set [ ]**
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all the objective functions. It is rarely the case that there is a single point that 
simultaneously optimizes all the objective functions. Therefore, we normally look for trade-
offs, rather than single solutions when dealing with multi-objective optimization problems. 
The notion of optimality is therefore, different in this case. The most commonly adopted 
notion of optimality is called Pareto optimality. We say that a vector of decision variables 

ℑ∈*x
�

 is Pareto optimal if there does not exist another ℑ∈x
�

 such that ( ) ( )*xfxf ii
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≤  for all 

ki ,1=  and ( ) ( )*xfxf jj

��
<  for at least one j. Unfortunately, the concept of Pareto optimality 

almost always gives not a single solution, but rather a set of solutions called the Pareto 

optimal set. The vectors *x
�

corresponding to the solutions included in the Pareto optimal 
set are called non-dominated. The plot of the objective functions whose non-dominated 
vectors are in the Pareto optimal set is called the Pareto front. In the following paragraphs 
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we will identify and propose the variables (genes), the objective functions, and the 
constraints which will be aggregated in the multi-objective optimization program. 
 

2. DESIGN PROBLEM 
 
The aim of our work is to perform a multi-objective optimization in order to obtain an 

input shaft sub-assembly (fig.1) as lighter as possible and with a minimal bending 
deflection. Obviously, these two objectives are in conflict and so it is impossible to reach 
such a result. Therefore we will use the Pareto front in order to deal with these goals. The 
actual design input data are listed bellow. 
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Fig.1. The input shaft sub-assembly sketch 

 
3. DESIGN INPUT DATA 
 

Data regarding shaft material 

Shaft material: 41MoCr11 (quenched and tempered): 30001 =HB  MPa; 

Strength tensile, [MPa]: 1000σ =r ; 

Allowable bending stress at static loading: 330=σaiI  MPa; 

Allowable bending stress at pulsating load: 150σ =aiII  MPa; 

Allowable bending stress at alternate load: 90σ =aiIII  MPa; 

Coefficient of loading: 6.0α = ; 

Fatigue strength at alternate load: 5001 =σ−  MPa; 

Fatigue strength at alternate load: 2751 =τ−  MPa; 

Fatigue strength at pulsating load: 4950 =τ  MPa; 

Young’s modulus: 5101.2 ⋅=E  MPa; 

Shear modulus: 86000=G  MPa; 

Material density: 61085,7ρ −⋅=mat  kg/mm3; 

Allowable fatigue strength coefficient: 5,1=ac ; 

Allowable bending deflection: 053,0δ =a mm; 

Allowable deflection at the supporting point angle: 053,0φ =a rad. 

Forces and torsion moments: 

Tangential force: 16891 =tF  N; 

Radial force: 6691 =rF  N; 

Axial forces: 3741 =aF  N; 

Torsion moment for the shaft: 266391 =T  Nmm. 

Data regarding gearing geometry: 

Centre distance: 80=wa  mm; 
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Number of pinion’s teeth: 341 =z ; 

Pinion’s width: 551 =b  mm; 

Pinion root diameter: 326.341 =fd  mm;  

The area of frontal face of teeth: 62.3=dpA  mm2. 

In order to perform the optimal design of the sub-assembly is necessary to set up: 
– The variables (genes) that uniquely describe the problem (both the objective 

function and the constraints); 
– The objective functions; 
– The constraints of the problem. 

 
4. OPTIMAL DESIGN OF THE SUB-ASSEMBLY 
 
4.1. Genes 
 

The first step of the setup of the optimization program consists in the identification 
of the variables that are able to uniquely describe the problem. These variables should be 
involved in the calculus of the objective functions and the constraints both. Hereinafter, 
since the optimization will be performed using genetic algorithms, instead of the term 
variable we will use the term gene. 

It is worthy to mention here that the notion of gene is rather larger that the usual 
meaning of a variable. A gene could be a real or an integer number, as well as an array, a 
matrix or a list. The objects of the list could be anything one could imagine and that have a 
numerical coding (representation). 

The authors consider that there are three genes that can describe completely the 
optimization problem. These genes are listed below:  

 
Gene 1:  i1  – index number for the shaft diameter, dca (values between 0…63); 
Gene 2:  i2  – index number for the radial shaft seal of the input shaft, d1m 

(values between 0…127); 
Gene 3:  i3  – index number for the tapered rolling bearing of the input shaft 

(values between 0…63). 
 

4.2. Objective functions 
 
The objective functions chosen for this application are the mass of the input shaft 

sub-assemblies (including the mass of the pinion and the mass of the two tapered rolling 
bearings) and the bending deflection. Note that the mass of the pinion is precisely 
computed since the area of frontal face of teeth is accurately determined [7]. 

Obj.1 The mass of the sub-assembly: 

 min2_ →⋅+ρ⋅= bearingmatpinionassemblysub MVM  (3) 

where: 
 Vpinion –  volume of the shaft (witch include also the volume of the pinion), [mm3]; 
 Mbearings – mass of the tapered rolling bearings, [kg]. 

Obj.2 The bending deflection: 

 ( ) ( ) ( ) minδδδ 7

2

7

2

7 →+= uuu VH  (4) 

where: 

 δH
2(x) – bending deflection in horizontal plane at the abscissa x, [mm]; 

 δV
2(x) – bending deflection in vertical plane at the abscissa x, [mm]. 
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4.3. Constraints 
 

We attached to the optimization problem a set of forty-one constraints. All values of 
these constraints have to be negative or zero. 

C1. The radial shaft seal diameter should be greater than the input end shaft 
diameter (fig. 2). 

 115.1
1

1 −⋅=
m

ca

d

d
g  (4)\ 

where: 
 dca – input end shaft diameter, [mm]; 
 d1m – radial shaft seal diameter, [mm]. 
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Fig.2. Mounting dimensions for radial shaft seal and the tapered rolling bearing 

C2. The output radial shaft seal diameter should be lower than the inner diameter of 
bearing cap (fig. 2). 

 1
1

min

2
2 −

+
=

a

m

D

d
g  (4) 

where: 
 d2m – output radial shaft seal diameter, [mm]; 
 Damin – inner diameter of bearing cap, [mm]. 

C3. The pinion root diameter should be greater than the input shaft collar diameter. 

 1
1

min
3 −=

f

b

d

d
g  (5) 

where: 
 dbmin – input shaft collar diameter, [mm]; 
 df1 – pinion root diameter, [mm]. 

C4. The maximum value of Von Misses equivalent stress in the input shaft should 
be inferior to the allowable bending stress. 

 1
σ

)(σ
4 −=

aiIII

e x
g  (6) 

C5. The fatigue strength coefficient of the input shaft in section 0 (fig. 3) must be 
greater or equal to the allowable fatigue strength coefficient for the shaft. 

 1
)( 0

5 −=
uCSO

c
g a  (7) 

where: 
 CSO(x) – function which returns the value of the fatigue strength coefficient (in 

section of abscissa x). 

ANNALS of the ORADEA UNIVERSITY. 

Fascicle of Management and Technological Engineering, Volume VII (XVII), 2008 

 638 



 
( ) ( )

( ) ( )xCxC

xCxC
xCSO

2

τ

2

σ

τσ)(
+

⋅
=  (8) 

where: 
 Cσ(x) – fatigue strength coefficient for bending; 

 Cτ(x) – fatigue strength coefficient for torsion. 
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Fig.3. Sections of the shaft where the fatigue strength is checked 

C6. The fatigue strength coefficient of the input shaft in section 2 (fig. 3) must be 
greater or equal to the allowable fatigue strength coefficient for the shaft. 

 1
)( 2

6 −=
uCSO

c
g a  (9) 

C7. The fatigue strength coefficient of the input shaft in section 3 (fig. 3) must be 
greater or equal to the allowable fatigue strength coefficient for the shaft. 

 1
)( 3

7 −=
uCSO

c
g a  (10) 

C8. The fatigue strength coefficient of the input shaft in section 5 (fig. 3) must be 
greater or equal to the allowable fatigue strength coefficient for the shaft. 

 1
)( 5

8 −=
uCSO

c
g a  (11) 

C9. The fatigue strength coefficient of the input shaft in section 6 (fig. 3) must be 
greater or equal to the allowable fatigue strength coefficient for the shaft. 

 1
)( 6

9 −=
uCSO

c
g a  (12) 

C10. The fatigue strength coefficient of the input shaft in section 8 (fig. 3) must be 
greater or equal to the allowable fatigue strength coefficient for the shaft. 

 1
)( 8

10 −=
uCSO

c
g a  (13) 

C11. The fatigue strength coefficient of the input shaft in section 9 (fig. 3) must be 
greater or equal to the allowable fatigue strength coefficient for the shaft. 

 1
)( 9

11 −=
uCSO

c
g a  (14) 

C12. The bending deflection of the input shaft in section 0 (fig. 3) should be less or 
equal to the allowable deflection bending for the shaft. 

 1
δ

)(δ 0
12 −=

a

u
g  (15) 

where: 

 δ(x) – function which return the value of bending deflection at the abscissa x, 
[mm]. 
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C14. The deflection at the supporting point angle of the input shaft in section 4 (fig. 
3) should be less or equal to the allowable deflection at the supporting point angle for the 
shaft. 

 1
φ

)(φ 4

14 −=
a

u
g  (17) 

where: 

 ϕ(x) – function which return the value of deflection at the supporting point 
angle at the abscissa x of the supporting point, [rad]. 

C15. The deflection at the supporting point angle of the input shaft in section 10 (fig. 
3) should be less or equal to the allowable deflection at the supporting point angle for the 
shaft. 

 1
φ

)(φ 10

15 −=
a

u
g  (18) 

C16. The torsion angle of the input shaft must be less or equal to the allowable 
torsion angle of the shaft. 

 
( )

1
θ

θ
16 −=

a

x
g  (19) 

where: 

 θ(x) – function which return the value of the torsion angle for the input shaft, 
[rad]. 

C17. The basic rating life must be greater to the imposed (accepted) basic rating life 
of the bearing. 

 1
_

17 −=
h

nech

L

L
g  (20) 

C18. The bearing stress between key and the key way of the input end shaft should 
be lower to the allowable bearing stress. 

 1
σ

σ
18 −=

sa

sg  (21) 

where: 
 σs – key bearing stress, [MPa]; 
 σsa – allowable bearing stress, [MPa]. 

C19. The shear stress of key of the input end shaft should be lower to the allowable 
shear stress. 

 119 −
τ

τ
=

fa

fg  (22) 

where: 

 τf – key shear stress, [MPa]; 

 τfa – allowable shear stress, [MPa]. 
 
4.4. Results 

 
The optimal Pareto set was obtained using Cambrian v.3.1 software belonging to 

the Optimal Design Centre of the Technical University of Cluj-Napoca. The resulted Pareto 
front is presented in fig. 4. 
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Fig.4. Pareto front (bending deflection vs. sub-assembly mass) 

 
4.5. Conclusions 
 

Obviously, it is up to the designer to choose, from the optimal Pareto set (fig. 4), the 
appropriate design solution. Analyzing the Pareto front we can observe that the solution of 
the shaft sub-assembly with the lower mass (1.292 kg) has the highest bending deflection 
(2.656·10-3 mm). The solution with the greater stiffness is two time heaviest than the 
lightest solution. If there are no special stiffness conditions, obviously the lightest solution 
will be selected.  

In the table bellow is presented a comparison between the lightest solution and the 
solution with the greater stiffness. 

Table 1 Comparison between the lightest solution and the solution with the greater 
stiffness 

 
The lightest design 

solution 
The solution with the 

greater stiffness 
Variation 

Mass [kg] 292.1_ =assemblysubM  032.2_ =assemblysubM  57,4 % 

Bending deflection [mm] ( ) 3

7 10656,2 −⋅=δ u  ( ) 3

7 10265,1 −⋅=δ u  110,0 % 

 

CR 24×35×7 HMS5 RG

32005X/Q

 

Fig.5 Optimal input shaft sub-assembly design for minimal mass solution 
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For the lightest input shaft sub-assembly solution the values of the genes are 
presented bellow: 

End shaft: 

End shaft length: 36=cal  mm 

End shaft diameter: 20=cad  mm 

Radial shaft seal (CR 24x35x7 HMS5 RG): 

Radial shaft seal diameter: 241 =md  mm 

Exterior radial shaft seal diameter: 352 =md  mm 

Radial shaft seal width: 7=mb  mm 

Tapered rolling bearing (32005 X/Q):  

Interior bearing diameter: 25=rd   mm 

Exterior bearing diameter: 47=rD  mm 

Bearing width: 15=rT  mm 

Sub-assembly mass: 292.1_ =assemblysubM  kg 

Maxim bending deflection: ( ) 3

7 10656,2 −⋅=δ u  mm 
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