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Abstract Geometrical shapes commonly used in Computer Aided Design (CAD) systems can be 
defined by several points obtained through the digitizing process. The coordinates of the points 
situated between two nodes can be approximated through both analytic and graphic methods, with 
Bézier curves. Thus, the analytic expression of the curve that approximates the points will be a Bezier 
function. The graphical form will be represented by a curve that crosses all the co-ordinates of the 
digitized points, without bringing any mutations of the initial curve. For case study on analyzing 
creating of the footwear parts  

 

1. IRREGULAR SHAPES: COMPUTER MODELING 
 
The modeling geometric forms on a computer can 
be reduced to a problem of numeric approximation: 
one curve, drawn by a specific equation, must fit a 
certain number of points (see fig. 1). However, 
generally speaking, irregular forms used in design 
problems cannot be described by a simple function 
like y=f(x) [1], [2]. 
In order to acquire the analytic expression of the 
interpolating function and its graphic form, the 

problem will be approached in the following 
manner: 

 We will take a finite set of points in the same 
geometrical plan: 

Fig.1, Generating the 
smoothest interpolating curve 
that crosses most of the initial 
points. 

(x0, y0), (x1, y1)… (xn-1, yn-1) 
 

 We have to generate the smoothest interpolating curve that crosses most of these 
points. 

We call interpolation the analytic expression of a geometrical shape that is 
numerically encoded.  
Interpolation is a particular case of a more general problem of mathematical 
approximation [2]. The function f(x) will be approximated, by interpolation, with the 
function g(τ), which is defined by a finite sum of simple functions Ψi(x i), as in the 
following expression: 
 

g(τ)=∑ciψi (τ), i∈[1,n]                                                         (1) 
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In order to be able to determine the n constants c1,c2,c3,... cn, we have to identify 
several restrictive conditions for the g(τ) function. The following restrictive conditions 
are commonly used in the theory of approximation: 
 
1. Interpolation constraints: 

 
g(τi)=f(xi), ∀∈i [1,n]                (2) 

 
2. Mixture of interpolation and constraints: 
 

a) g(τi )=f(xi)   ∀i ∈ [i:k<n] 
b) g'(τ1)=f'(x1)  and (xk)=f'(xk)                         (3) 
c) g(τ) is a twice differential function 

 
3. Various constraints: 
 

||f-g||=min{||f-h|| /h ∈distance (ψ1,ψ2,....ψn)}             (4) 
 
i.e. constants c1,c2,c3,... cn should be chosen in such a way as to allow that the 
minimum of all possible functions ||f-g|| should be obtained of the set of all possible 
linear combinations: 

2. DEFINING INTERPOLATING POLYNOMS 

However, theory cannot be directly applied in the computer-aided graphics, 
and this is why we have to approach the interpolation problem from a parametric 
point of view. 
The parametric equations used in interpolation are actually polynomial equations, 
usually bicubic, described as: 
 

g(t)=at3+bt2+ct+d                
 
Thus, we will approximate the set of points (x0, y0), (x1, y1)… (xn-1, yn-1) by the aid of 
two variables x(t) and y(t), defined by two parametric interpolation equations: 

 
x(t)=axt3+bxt2+cxt+dx 

                                                                          (5) 
y(t)=ayt3+byt2+cyt+dy 

 
In order to do that, we will attach two supplementary systems of co-ordinates – 

tOx and tOy – to the present one – xOy. We select the variation domain of parameter 
t. Then, we solve the two independent problems of theoretical interpolation for the 
two variables, x and y. This will allow the determination of the four coefficients from 
the following restrictive conditions: 
 

1. The value of the polynom in the nodes must be the same with its numeric 
value: 

 
x(ti)=xi, y(ti)=yi                                                                (6) 
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where i=0… n and xi and yi are nodes: (x0, y0), (x1, y1)… (xn, yn) 
 

1. The vector that is tangent to the curve in a node must be the same as the 
vector of the initial curve. If the components of the vector tangent to the 
interpolating curve are: 

 
x’(t)=3axt2+2bxt+cx 

                                                                                        (7) 
y’(t)=3ayt2+2byt+cy 

 
then the restrictive conditions for the limit will be: 
 
                                         x’(ti)=li  and y’(ti)=mi                                                         (8) 

 
where li and mi are the values of the incline of the tangents in the nodes, as 
determined in the tOx and tOy co-ordinates systems. 
The mathematical representation of the equation (5), (6), (7) and (8) leads to the 
following conclusions: 
 
1. In order to obtain the interpolating polynoms between two nodes (xi, yi) and (xi+1, 
yi+1), we have to solve a system of 8 equations with 8 unknown values. The 
equations will be determined this way: 

• Relation (5) combined with restriction (6) will allow us to obtain 4 of the 
equations in the system; 
• Relation (7) combined with restriction (8) will allow us to obtain the remaining 
4 equations. 

2. The way we choose the variation domain of the parameter t and the way we 
choose the direction of the tangents in the nodes will determine the manner in which 
we theoretically solve the interpolation proces. 
 
3. THEORETICALLY SOLVING THE INTERPOLATION BÉZIER CURVES 

 
Without affecting the general area of an interpolation problem, the interpolating 

Bézier polynoms derive from the following conditions[1], [2]: 
 

C1. We take the interval [0,1] as a variation domain for parameter t. In this case, the 
conditions for the limit (relations (5) and (6)) will be: 
 

x(0)=dx                               y(0)=dy  
                                                                                                 (9) 

x(1)=ax+bx+cx+dx              y(1)=ay+by+cy+dy 
 
C2. The directions of the tangents in the nodes will be defined as the inclination of 
the tangent led in every node. For example, in the (xi,yi) node, they will be calculated 
with the following relations: 
 

li=m(xi-xc1)          mi=m(yi-yc1) 
                                                                              (10) 
li+1=m(xi+1-xc2)        mi+1=m(yi+1-yc2) 

or: 
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cx= m(xi-xc1)     cy=m(yi-yc1)                                          
for t=0 

                                                                                         (11) 
3ax+2bx+cx=m(xi+1-xc2)        3ay+2by+cy=m(yi+1-yc2)     

for t=1 
 
where m, known as a shape factor in the literature, usually takes the value 3, xi,yi 
and xi+1,yi+1 are the co-ordinates of the nodes (the extreme point of the curves), 
xc1,yc1 and xc2,yc2 are the co-ordinates of the two points that belong to the tangents to 
the Bézier curve and they are called points of control. 

Relations (9) and (11) of the two conditions lead to a system of 8 equations 
with 8 unknown values, with the following solutions: 

 
dx=xi                                       dy=yi 

(12)cx=3(xc1-xi)                              cy=3(yc1-xi) 
bx=3(xi+1-xi)-cx                         by=3(yi+1-yi)-cy 
ax=xc2-xi-cx-bx                         ay=yc2-yi-cy-by 

 
Relation (12) represents the mathematical 
expression of the coefficients of the 
bicubic polynomial Bézier functions. 
If we analyse the two conditions, the 
conclusions will be as follows: 
 
1. A Bézier curve is defined by four points: 
• two fixed points on the Bézier curve 

(nodes), that are fixed; 
            Fig. 2, Defining the Bézier curves 

- • two other intermediate points, that belong not 
to the curve, but to its tangents. The two points 
are called control points and are positioned on 
the tangents of the curve led in the nodes( 
P(xi,yi), P(xi+1,yi+1), see fig. 2). 

 
2. Between two nodes we can define many Bézier 
curves, related to the position of the control point on 
the tangent (see fig. 3). This makes it possible, in a 
CAD work session, to draw several Bézier curves 
and choose the convenient one – the one that 
approximates a set of points between the two 
nodes with the highest precision. 

Fig. 3, Between two nodes we 
can define many Bézier curves 

 
3. Most of the points that define a Bézier curve and their graphic display are obtained 
by giving various values (from 0 to 1) to the t parameter for the curve described with 
equations (10) whose parameters had been determined by relations (12). 
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4. The graphical form of the Bézier curve will be determined by the position of the 
nodes (fixed points) and the co-ordinates of the control points on the two tangents led 
to the curve. Depending on their position, we will obtain either concave or a convex 
curve, in any case a curve with a singe turning point (see picture 4). 

4. ORIGINAL SOFTWARE PRODUCT USING BÉZIER CURVES FOR 
INTERPOLATION 

Using the software product I developed, you can find the best curve to approximate a 
set of points with. Most of the points 
will then be positioned on a concave or 
convex contour or on a curve that has 
only one turning point. The outline will 
be made out of only one curve, 
passing through the two extreme 
points and the intermediate points 
(see picture 5). The main steps 
taken by the software are: Fig. 4, The graphical form of the Bézier 

curve 
 
S1. It draws an imaginary line between the extreme points. The set of points can be 
approximated with a Bézier curve 
only if the points are positioned 
above or below the line or if it has 
only one intersection point with the 
curve. Otherwise, the set of points 
will be divided in several sets, until 
this condition will be fulfilled.  
 
S2. It calculates the area determined 
by the Bézier polynom, lines y=yi 

and y=yi+1 and the Ox axis. The Bézier 
polynom can be obtained by joining with a 
line each intermediate point with the 
following one. 

Fig 5, The  curve, passing through the 
two extreme points and the intermediate 
points 

 

S3. It determines the inclination and the 
analytical expression of the tangents in the 
two nodes. In order to do this(see picture 6), 
the two segments will be rotated until all 

points fit between them. 

Fig. 6, It draws an imaginary line between 
nodes and  extreme points 

 
S4. It establishes the variation domain of the control point. The point will be 
positioned in one of the two possibilities: 
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– if all of the points are on one side the cord, the control points will be positioned 
between the nodes and the intersection of the tangents. 

– if the points intersect the cord, the control points will be positioned between 
the highest and the lowest point. 

 
S5. It will determine (see picture 7): 

S5.1. The polynomial coefficients of the Bézier curves, calculated with 
relation (12). 

 
S5.2. The set of points x(t) and y(t) that determine the Bézier curve, by 

giving various values to the t 
parameter, from within its 
domain: [0,1]. 

 
S5.3 The graphic form 

of the Bézier forms, by 
signalling the x(t) and y(t) 
points on the display, as they 
were calculated in the previous 
sequence. 

 
S5.4 The area 

determined by the polygon 
made out of the intermediate 
points, lines y=yi and y=yi+1 and the Ox axis. 

Fig. 7, Bézier curves by giving various to the 
control points

S5.5 The difference between the absolute value of the area determined 
in sequence S2 and the absolute value of the area determined in sequences  

 
S6. After ending the calculus cycle, 
it selects the minimum value of the 
difference between the area of the 
Bézier polygon and the Bézier 
curve, as determined in sequence 
S5.5. 
 
S7. It redraws the Bézier curve as 
it was chosen in sequence S6, 
signalling the points that can be 
found on it from the initial set of 
points (see picture 8).  

Fig. 8, It redraws the Bézier curve as it was 
chosen 

This curve will be the Bézier curve that best approximates the set of points. 
 
5. DETERMINING THE MODELING OF THE PATTERN SHAPES BELONGING TO 
A SHOE PRODUCT BY EXPERIMENTING WITH BÉZIER 
 
The main working sequences in modeling complex outlines – more precisely, 
already-made patterns of footwear products – are as follows: 
 
1. We mark the nodes on the outlines. These will mark those portions of the curve 
that can be approximated with a Bézier interpolating function.  
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2. Each portion will be digitally modeled. The 
coordinates of the points will be registered in a data 
file.  Picture 9 presents the way the nodes have 
been marked on the top-of-the-boot outline. 
 
3. An interactive session follows: by the means 
previously exposed we interpolate the points 
between two nodes. By executing the program, we 
can see the graphic results and also register in a data 
file the analytical forms of each interpolating 
function related to each curve portion. 

Fig.  9, The parts of the 
footwear products 

 
Table nr. 1 

Discretized 
curve per 
portion  

Looking 
for 

tangents 
at the 

group of 
points 

Generating 
Beziér curves 

The Bezier that 
best 

approximates 
the group of 

digitized points 

The analytical form of the 
curve 

   
 

 
 

x(t)= 
50.9t3-56.7t2+63.8t+110 

 
y(t)= 

21.2t3+78.5t2+88.3t+146 
 

 

  

 

x(t)= 
27.4t3-68.4 t2+76.9t+176 

 
y(t)= 

-30 t3 + 115t 
 

 

  

 

x(t)= 
11.8t3-76.0 t2+17.1t+212 

 
y(t)= 

-3.5 t3+50.6 t2 103.1t+85 
 

   

  

x(t)=102 t3-153 t2 +165 
 
y(t)=-8 t3+12 t2 +29 

 

 

 
 

 

 
 

 
x(t)= 

-22.5 t3+19.6t2+2.0t+114 
 

y(t)= 
22.6 t3+4.9 t2 -5.5t+33 
 

 

 

 
 

 

  

x(t)= 
-2.8 t3+31.2 t2  21.6t+60 

 
y(t)= 

-3. t3+35.9 t2+27.0t+86 
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Table 1 shows the main sequences of the program, as it has to executed for 
the top-of-the-boot pattern: 

– Column 1 shows the number of points that will be approximated with 
a continuous curve. 
– Column 2 shows the sequence necessary in obtaining the tangents 
to the points' group. 
– Column 3 presents all Bézier curves that can be drawn between two 
nodes, using different variations of the control points on the tangent. 
– Column 4 contains, for each group of points, the Bézier curve that 
best approximates them. 
– Column 5 presents the analytical form of the curve portions that 
belong to the modeled pattern. 

 
The information in the table is relevant for the rich opportunities offered by the 
program. One can easily notice how easy it becomes to model irregular shapes, 
belonging to concave, convex, concave-convex or to straight outlines. 

After modeling each group of points, we register the graphical interpolated 
shape by determining the values x(t) and y(t) in points belonging to the interval [0,1] 
(see picture 10). In order to make more clear the working accuracy, on the modeled 
outline, we marked up the nodes and the tangents to the points' group as well as the 
corresponding control points. 
 
6. CONCLUSIONS 
1. By using a single function, Beziér polinoms allow the approximation of a group of 
points found on a concave, convex or concave-convex curve. 
2. The patterns of the shoe products have irregular geometrical shapes, with plenty of 
concavities and convexities. This is why one must split them intro curve portions 
before modeling them.  
3. The result of modeling a shoe pattern has many advantages because it can 
approximated only by using several interpolating polinoms, depending on their 
configuration. The polinoms will represent the numerical database of the pattern 
modified in CAD sessions. 
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