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ABSTRACT: The essential idea is to split the bearing into „rolling elements” with balls and to associate to 
each part a fixed element. The approximation using classic forces method for bearings has been replaced by 
the displacement method with the aim of using a global method that allows a correlation between bearing 
calculations and global structure calculations. 
 
1. INTRODUCTION 
These elements known as „rolling elements” are considered to be a flat board that 
connects a point from the interior ring with a point in the exterior ring through a rigidity 
matrix of 10x10 in dimension. This matrix provides the connection between the 10 degrees 
of active freedom (2x3 degrees of translation freedom and 2x2 degrees of rotation 
freedom) and provides the transition of 3 forces and 2 moments. If the degrees of freedom 
of the bearing rotation are free of all links than no moment is transmitted on that direction. 

 
 

Figure 1.1. Splitting bearings into “rolling elements” 
 

The ring split has been verified through the following hypothesis: 
 The transverse section of the rings is non-deformable. 
 For each rolling element there is a certain point on the interior ring and 

a point on the exterior ring. These points are situated in a radial plane 
that contains the center of the rolling body. 
  

2. THE PRINCIPLES OF BEARING ELEMENT DETERMINATION 
For bearing encampment, where rolls or balls can be assimilated with solids, the principles 
of bearing element determination trough classic finite element approximation or trough 
numeric calculation are identical. Element integration consists in the determination, for 
shifting due to the N1 and N2 joints, of the interior and exterior ring (fig.1.2.), elementary 
shifts of the center Cr of the rolling element, ensuring its balance in radial plane.  
 
 

 
 
 
 

 
Figure 1.2. Sections through “the rolling element” 
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Indeed, for known shifts of each ring’s joints, the rolling element will be subjected to 
contact forces at the running track level and shoulders. These forces Q are estimated by 
Hertz’s theory of contact pressure:  
  n

fCQ δ=          (1.1.) 
Where,  

- δ is the deformation of elements in contact, n being an exponent varies based on 
the nature of the contact  
- Cf is the contact rigidity constant defined by Hertz that depends on the bearing’s 
geometry and material characteristics. 

For each iteration the forces acting on the rolling elements, the rings and the shoulders are 
determined. This is done by taking into consideration the bearing’s geometric elements. 
Although balance is insufficient, forces between the rolling elements, rings and shoulders 
are known, so the tangent rigidity matrix between the rolling elements and the rings in 
known. An equivalent rigidity matrix can be determined between the joints of the interior 
and exterior ring of the bearing. This matrix corresponds to the tangent rigidity matrix 
associated to the rolling element. 
The essential difference between the elements taken into consideration is that the radial 
field oscillations are defined through a tangent rigidity matrix for each rolling element. In 
each case “rolling element” assembling leads to a classic nonlinear finite element model, 
where the rigidity matrix depends on the shifts.     
The balance position of the system “rings–rolling elements” is calculated on the Newton-
Raphson iterative loop. 
The Newton-Raphson method consists of iterative determination on the nonlinear 
phenomenon shift generalization matrix: 
 
  { }( ){ } { }( )[ ]{ } { } { }0*** =−= extFxxKxR      (1.2.) 
Where: 
 -  {x*}is the generalized shift vector; 

-  [K(x)] is the system rigidity matrix; 
-  {Fext} is the exterior forces applied to the system vector; 
-  {R(x)} is the residual efforts vector. 

On each iteration we determine: 
- The forces and momentums applied on the rolling elements by the rings 

and possibly the shoulders; 
- The rigidity matrix tangential between the rolling elements and the rings; 
- The residual effort vector that acts on the rolling elements.  

These calculations are made taking into consideration the lost motion and the geometry of 
the bearing.  
To each bearing we associate a system of axes S1(O,x,y,z) in which the z axis 
corresponds to the bearing axis. The position of reference of the center Cr of a rolling 
element is determined by the Φ angle of the axis system S2(Cr,r,n,z) tied to the rolling 
element. 

 
 
 

 
 
 

Figure 1.3. Associated axis systems 
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In the radial field (Cr,r,z) we determine the rolling element’s balance. The S2 system is the 
reference one in which the rolling element’s geometry and N1 and N2 joints position in 
relation to the center Cr are determined. The shift vectors will be: 
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Figure 1.4. Generalized shift vectors 
 

For calculating global finite elements, the generalized shift vectors of the N1 and N2 joints 
are calculated each iteration and can be represented in the system S1. To determine the 
balance for the „rolling elements-rings” system we take into account only the relative shift 
of the rings. We consider the exterior ring as the reference and we will determine the 
relative shifts of the centers of the rolling elements in a S3(Cr,r’,n,z’) system tied to this ring, 
but we will take into account the possible oscillations of the exterior ring’s section in the 
reference system S2. 
 
 
 
 
 
 

Figure 1.5. Oscillation angle 
 

The oscillation angle, γ, of the exterior ring in the radial field, is expressed according to the 
shifts θ1 and θ2 of the N1 joint in the reference system S1 by: 

yx θϕθϕγ ⋅+⋅−= cossin       (1.4.) 
In this system the joints N1 and N2 position is expressed through the vector: 
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Where: 
  ( )γγ sinsin 22

'
2 zrr +−=   ( )γγ coscos 22

'
2 zrz +=  

The geometric matrixes [G1] and [G2] allow the determination of the plane shifts of Cr and 
the interior and exterior rings in the S3 system, depending on the shifts in 3D of the N1 and 
N2 joints defined in the S1 system. 
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These formulas are obtained by calculating the shifts of the Ni points in the S3 system, 
starting from the shifts in the S1 system. 
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where [  is the rotation matrix that enables the switch from the S1 system to S3. ]31→ℜ

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−=ℜ →

γϕγϕγ
ϕϕ

γϕγϕγ

cossinsincossin
0cossin
sinsincoscoscos

31    (1.9) 

We will formulate the translation and rotation shifts of each ring in the Cr point by 
assimilating the ring sections wit  soli  bodi s. F r each ring we will obtain: h d e o
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where {T } and {R } are the translation and rotation torsos of the ring in question.  The 
geometric matrix, for 3 relative shifts in radial field, is expressed by: 
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where r and z are the coordinates of the { riCN } vector in the S3 system. The last column, 
equal to zero, indicates the fact that the rotations around the bearing axis are not taken 
into consideration. 
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