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Abstract: A fast algorithm to predict elastic fields due to arbitrarily shaped eigenstrains in an elastic, 
isotropic infinite space is advanced in this paper.  The inclusion domain is partitioned in a set of cuboids of 
uniform eigenstrains, and solutions for each individual cuboid, derived by Chiu in closed form expressions, 
are superimposed.  Computation is accelerated by implementing three-dimensional spectral methods, in a 
hybrid convolution-correlation algorithm.  The newly proposed algorithm can be used as a partial solution 
when assessing elastic fields due to eigenstrains in an isotropic half-space. 

 
1. INTRODUCTION 
Eigenstrains such as plastic strains, misfits strains, thermal expansion or phase 
transformation, generate a linear elastic stress field in an isotropic half-space. Usually, 
assessment of this field, also referred to as the inclusion problem, is performed using a 
problem decomposition method originally suggested by Chiu [3]. His formulation requires 
the solution to the inclusion problem in infinite isotropic space.  Although this problem has 
received a great deal of attention in the last four decades, [9-12], closed form solutions 
exist only in a few cases of simple, regular shapes, such as spherical or cuboidal 
eigenstrains. In most real-life designing situations, these limiting assumptions are not met, 
thus imposing the use of numerical approach.   
It has become standard practice to divide the inclusion domain into a collection of non-
intersecting cuboids of uniform eigenstrains, by means of a rectangular three-dimensional 
mesh, and to approximate the effect of the arbitrarily shaped inclusion by superimposing 
the individual contributions of each cuboidal inclusion. Assuming a continuous distribution 
as piece-wise constant may induce an important discretization error if the step of the 
imposed grid is not small enough. However, this approach remains the most efficient to 
date, as integration over arbitrarily shaped domains is substituted by summation over all 
grid elements, which can be performed numerically in an efficient manner.   

 
2. PROBLEM DISCRETIZATION 
The choice for the grid must consider two requirements. Firstly, union of all elementary 
domains should cover the inclusion domain, and secondly, the contribution of each 
individual grid element, also referred to as the influence coefficient (IC), should be known 
from existing analytical solutions. These requirements are both met if a rectangular grid is 
imposed. A supplementary condition is needed if spectral methods, which speed up the 
computation dramatically, are used.  If the grid is uniformly spaced, the number of different 
influence coefficients to be computed is reduced to the number of different distances 
between cell control points. This allows reformulation of multi-summation operation as a 
discrete convolution, which can be evaluated efficiently in the frequency domain, according 
to convolution and/or correlation theorems. 
A uniformly-spaced rectangular grid is thus established in a cuboidal domain including the 
arbitrarily shaped eigenstrains. According to superposition principle, problem solution is 
obtained by superimposing the solution of each cuboidal inclusion. Eigenstrains are 
assumed constant in the elementary cell, but otherwise can vary along computational 
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domain. Therefore, the solution for a cuboidal inclusion of constant eigenstrains in an 
infinite space, namely the IC, is needed. 
The first closed form solution for the IC was advanced by Chiu, [2]. A Cartesian coordinate 
system ′ ′ ′1 2 3( , , )x x x  is attached to the center of the cuboid. In the presence of plastic strains 

ε p
ij , displacements  are related to strains by the strain-displacement equations: iu
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where  is the elastic component of strains, and a single comma in the subscript denotes 
the derivative with respect to the corresponding direction: 

eε
′= ∂ ∂,i j i ju u x .  By substituting 

ε e
ij  into the constitutive equation (Hooke's law), one can find the stresses induced by the 

eigenstrains ε p
ij .  The gradients of displacements needed in eq. (1) were obtained by Chiu, 

[2], using the Galerkin vector: 
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where μ  and λ  are Lame's constants, , mc = 1,8m  are the eight vectors linking the 
corners of the cuboid to the observation point, and  is a function whose fourth 
derivates with respect to coordinates 

( )mD c
′jx  are obtained by circular permutation in one of four 

categories, , ,  and , given in [2].  Einstein summation convention is 
employed throughout this paper. 

,1D 111 ,1112D ,1122D ,1123D

The elastic fields σ ij  induced in the observation point ′ ′ ′1 2 3( , , )x x x  by a cuboidal inclusion of 

uniform eigenstrains ε l
p
k , centered in origin, can then be expressed in terms of influence 

coefficients , computed with the aid of Eqs. lijkA (1) and (2): 
 

 . (3) σ ′ ′ ′ ′ ′ ′= l l1 2 3 1 2 3( , , ) ( , , ) (0,0,0)p
ij ijk kx x x A x x x ε

 
Chiu’s decomposition method [3] for the inclusion problem in isotropic half-space requires 
superposition of elastic fields induced by the mirror image of the original inclusion with 
respect to half-space boundary: 
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Summation of elastic fields induced by pε  and pmε  in a coordinate system with the origin 
on the half-space boundary yields the following equation: 
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where 1 2 3( , , )x x x  is the observation point and ′ ′ ′1 2 3( , , )x x x  the source point (the control point 
of the elementary cuboid with uniform eigenstrains).   
It has become standard practice to break up an arbitrarily shaped inclusion into multiple 
cuboids of uniform eigenstrains and to apply the superposition principle in order to 
evaluate the resulting stress state.  As all distributions are assumed piece-wise constant, it 
is convenient to index the collection of cuboids by a sequence of three integers ranging 
from 1 to  and  respectively, with 1 2,N N 3N = 1 2 3N N N N , and to express all distributions as 
functions of these integers instead of coordinates.  After superimposing the individual 
contributions of all cuboids, Eq. (5) becomes: 
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which expresses the stress field induced in infinite space at cell ( ,  by all cuboids of 
uniform eigenstrains  and their mirror images.   

, )i j k
l( , , )m n

 
3. ACCELERATION OF COMPUTATION 
Convolution product is used to derive the answer of a linear elastic system subjected to an 
input, when the unit impulse response, also referred to as the Green function, is known.  
For contact problems, the response of an elastic isotropic half-space to a unit concentrated 
force applied on the boundary is known from the Boussinesq [1] and/or Cerruti 
fundamental solutions. The product of this solution (or Green function) with a shape 
function, as defined in [6], yields the influence coefficient, which expresses the effect of an 
element of the grid into another. Superposition principle is then applied, implying 
summation of individual contributions over all grid elements. This multi-summation 
process, which is in fact a convolution product, is very time-consuming, being of order 

 for a grid with N  elements. The solution currently applied is to compute the 
convolution in the frequency domain, according to convolution theorem, thus reducing the 
computational effort to . An important issue when using discrete cyclic 
convolution to assess continuous linear convolution is the periodization of the problem, 
which induce the so called periodicity error [6].  If the Green function is known in the time-
space domain, the Discrete Convolution Fast Fourier Transform (DCFFT) technique 
proposed by Liu, Wang and Liu, [6], eliminates completely the periodicity error, as discrete 
cyclic convolution approaches the linear continuous convolution the way quadrature 
estimates continuous integral. 

2(O N

( log )O N N

The two terms in Eq. (6) imply multi-summation over three dimensions, as both source and 
observation domains are three-dimensional. Computation of these distributions by direct 
multiplication method (DMM) is very time-consuming, therefore a non-conventional 
approach is required.  When analyzing the products to be computed, one can see that the 
first term in Eq. (6) is a three-dimensional convolution, while the second term is a 
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convolution with respect to directions of 
r

1x  and 
r

2x  and a correlation with respect to 
direction of 

r
3x . Liu and Wang [7] suggested that correlation theorem, together with 

convolution theorem, could be used together in a hybrid convolution-correlation 
multidimensional algorithm.   
Beginning with Ju and Farris, [5], spectral methods are intensively used in contact 
mechanics to rapidly evaluate convolution-type products. Jacq et al. [4] applied a two-
dimensional fast Fourier transform algorithm to speed up the computation of convolution 
products arising in Eq. (6).  His approach reduces the computational requirements from 

 to . However, using a two-dimensional algorithm to solve 
a problem which is essentially three-dimensional is not likely to produce optimum results.  
Therefore, in this paper, a three dimensional spectral algorithm is proposed, capable of 
evaluating both convolution and hybrid convolution-correlation type products in 

 operations. 

2 2 2
1 2 3( )O N N N

1 2 3( lO N N N

2
3 1 2 1 2( logO N N N N N

1 2 3og )N N N

)

The newly advanced algorithm is based on the notorious DCFFT technique by Liu, Wang 
and Liu [6].  If the ICs are known in the time/space domain, this algorithm can evaluate the 
linear convolution by means of a cyclic convolution with no periodicity error. The concepts 
of "zero-padding" and "wrap-around order", presented in [6], can be extended naturally to 
the three-dimensional case, and applied to compute the first term in the right side of Eq. 
(6).  However, for the second term, due to positioning of the mirror-image element relative 
to global coordinate system (linked to half-space boundary), convolution turns to 
correlation with respect to direction of 

r
3x . In order to use three-dimensional FFT and 

convolution theorem to evaluate the convolution-correlation product, the following 
algorithm is proposed: 
1.  The influence coefficients are computed as a three dimensional array of 

 elements, using the formulas derived from Eqs. 
A

× ×1 2 2N N N3

3

(1) and (2). 
2.   is extended into a  array by applying zero-padding and wrap around 
order with respect to directions of 

A × ×1 22 2 2N N N
r

1x  and 
r

2x , as requested by the classic DCFFT 
algorithm. 
3.  Eigenstrains pε  are inputted as a three-dimensional array of × ×1 2 3N N N  elements. 
4.  pε  is extended to a  array by zero-padding. × ×1 22 2 2N N N3

5.  Elements of pε  are rearranged in reversed order with respect to direction of 
r

3x . 

6.  The Fourier transforms of  and A pε  are computed by means of a three dimensional 
FFT algorithm, thus obtaining the complex arrays Â  and ˆ pε , where ( ) is used to denote 
the discrete Fourier transform of any time/space array . 

ĝ
g

7.  The spectral array of residual stresses is computed as element-by-element product 
between convolution terms:  σ ε= ⋅( ) ˆ ˆˆ r space pA . 
8.  The time/space array of residual stresses is finally obtained by means of an inverse 
discrete Fourier transform: . σ σ=( ) ( )( ˆ )r space r spaceIFFT
9.  The terms in the extended domain are discarded, thus keeping the terms  
of  as output. 

× ×1 2N N N3
)σ (r space

Domain extension with respect to directions of 
r

1x  and 
r

2x  in step 2 is required by the 
DCFFT technique, and no additional treatment is needed to evaluate the corresponding 
discrete cyclic convolutions. On the other hand, according to discrete correlation theorem, 
[13], a correlation product can be evaluated as a convolution between one member of the 
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correlation and the complex conjugate of the other.  Therefore, DCFFT can be applied with 
respect to direction of 

r
3x  too, if the second term, namely the eigeinstrains array, is 

substituted by its complex conjugates in the frequency domain.  The fastest way to 
achieve this is to rearrange the terms of pε

)

, as indicated in step 4.  Indeed, when FFT is 
applied on a series of real terms , thus obtaining , one can obtain its complex 
conjugate, , simply by reading  in reversed order.  This remarkable property allows for 
combining convolutions and correlations products with respect to different directions in a 
hybrid algorithm.  By applying three-dimensional FFT, the computational effort for 
computing the inclusion problem in infinite, elastic and isotropic space is reduced 
considerably from O N , in Jacq’s approach, [4], to  
operations for the newly proposed algorithm. 

g

2

ĝ
∗ĝ g

1ogN2
2( l N3 1N N 1 2 3 1 2 3( logO N N N N N N )

 
4. PROGRAM VALIDATION 
In order to verify the formulas for the ICs, a cuboid of sides Δ Δ1 2,  and  is considered in 
an infinite elastic isotropic space with Poisson’s ratio 

Δ3

ν  and Young’s modulus . A 
Cartesian coordinate system is attached to the center of the cuboid.  The orientation of the 
axes is depicted on each of the following figures.  The cuboidal domain is assumed to 
have vanishing eigenstrains, except for 

E

ε11
p , uniformly distributed.  Dimensionless 

coordinates  are defined as ratios to corresponding cuboid sides, = Δi i ix xix . Normal 
stresses σ 11 ε11

p
ii  induced by strains  are normalized by ε11

pE .  Results for different Δ Δ1 3  
ratios are depicted in Figs. 1 - 4, revealing a good match with existing solutions.   

 

3x  
a. b. 

Figure 1.  Normal stresses due to a cuboidal inclusion of uniformly distributed plastic strains ε11
p , 

Δ Δ = 5 : a. this code,  b. Chiu’s results [2] 1 3
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3x  
a. b. 

Figure 2.  Normal stresses due to a cuboidal inclusion of uniformly distributed plastic strains ε11
p , 

Δ Δ =1 3 1: a. this code,  b. Chiu’s results [2] 

3x  
a. b. 

Figure 3.  Normal stresses due to a cuboidal inclusion of uniformly distributed plastic strains ε11
p , 

Δ Δ =3 1 5 : a. this code,  b. Chiu’s results [2] 

1x  
a. b. 

ε11
p , Figure 4.  Normal stresses due to a cuboidal inclusion of uniformly distributed plastic strains 

various Δ Δ1 3 : a. this code,  b. Liu and Wang’s results [7] 
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A new algorithm to compute numeric
in an infinite, elas r. The numerical 

 on breaking up the inclusion domain in a set of cuboids of uniform 

thm reduces the computational effort from the 

e

sinesq, J., (1969), Application des potentiels á l'etude de l'equilibre et du mouvement des solides 
élastiqu . Reed. A. Blanchard, Paris. 

7), On the Stress Field Due to Initial Strains in a Cuboid Surrounded by an Infinite Elastic 

 2, 

. CONCLUSIONS 
ally elastic fields due to arbitrarily shaped eigenstrains 

tic and isotropic space is proposed in this pape
formulation is based
eigenstrains, and on superimposing the solutions for each individual cuboidal inclusion, 
also known as the influence coefficients. 
Three-dimensional spectral methods are implemented for acceleration of computation. A 
new convolution-correlation hybrid algorithm is advanced, based on the DCFFT technique 
by Liu, Wand and Liu, [6].  This algori
existing 2

3 1 2 1 2( log )O N N N N N  to 1 2 3 1 2 3( log )O N N N N N N  operations. 
The newly proposed algorithm can be used as a partial solution to the problem of elastic 
fields due to igenstrains in an isotropic half-space, if Chiu’s decomposition method, [3], is 
used. 
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