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Abstract: A simplified algorithm to predict pressure distribution in elastic – perfectly plastic contacts is 
advanced in this paper.  The model relies on the numerical solution for the elastic contact advanced by 
Polonsky and Keer, enhanced with Discrete Convolution Fast Fourier Transform (DCFFT) technique to 
efficiently evaluate convolution products.  Contribution of plastic strain region is accounted for indirectly, by 
imposing a material dependent upper limit for the nodal pressures.  The new constriction is imposed during 
conjugate gradient iterations, thus a new iterative level, present in most elastic – perfectly plastic solvers, is 
not required.  Numerical simulations are performed for several types of contact geometries. 
 
1. INTRODUCTION 
The formalism in which analytical solutions of contact mechanics are derived no longer 
meets the requirements of modern design, in which technological improvements led to 
more complex surface equations for the contacting bodies. While Hertz model assumes 
surface around contact region as smooth and quadratic, the surface of any engineering 
element is inevitably rough. The analysis of roughness-induced stresses was performed 
mainly using statistical or deterministic models.  While statistical theories do not account 
for the essentially multiscale nature of surface topography, deterministic models require a 
fine discretization of the contact area, which increases dramatically the computational 
effort.  Consequently, the interest for fast and accurate numerical methods led to important 
developments in this domain.  
Following the works of Mayeur, [8], for the two-dimensional case and of Jacq et al. [5], for 
the three-dimensional model, elastic-plastic contact problem is solved numerically with 
algorithms based on multiple levels of iterations. The main idea is to relate elastic and 
residual part of the solution until convergence is reached. Pressure distribution is related to 
plastic strain via surface residual displacement. In its turn, plastic strain is related to 
pressure via contact stresses.  This formulation, which determines explicitly the plastic 
strain region, leads to increased model complexity. One additional drawback is present 
when modeling contact of elastic - perfectly plastic bodies: the increment of plastic strain 
cannot be determined from Prandtl-Reuss equations for this type of behavior. 
Consequently, the residual state cannot be solved using this formulation. 
A simplified model, which predicts pressure distribution without computing explicitly the 
residual state, is presented in this paper. For elastic - perfectly plastic contacts, a limiting 
value for pressure was observed experimentally or by finite element simulations.  Abbott 
and Firestone, [1], suggested that this value, also referred to as yield pressure, is nearly 
three times the yield strength of the softer material: max 3 Yp σ= . 

 
2. FORMULATION 
The algorithm newly proposed is centered on the elastic contact solver advanced by 
Polonsky and Keer, [9], completed with the new constriction which imposes nodal 
pressures limitation to yield pressure value.   
Using Betti's reciprocal theorem, Mayeur, [8], decomposed the elastic-plastic contact 
problem in an elastic and a residual part, as shown in Fig. 1. The plastic strain is denoted 
by pε  and pressure distribution by p . The two problems are not independent, because 
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solution of the elastic subproblem requires residual deflections, while elastic stresses are 
needed for the solution of the residual subproblem. The displacements, the strains and the 
elastic stresses have both elastic and residual components, which are determined in an 
iterative approach, based on the relation between pressure distribution and plastic strain 
region.   

 

Elastic-plastic 
problem 

Elastic 
subproblem 

Residual 
subproblem 

Figure 1.  Decomposition of elastic-plastic contact problem 
 
According to this formulation and reciprocal theorem, contact interference equation can be 
written: 

 
  (1) .pr rω+ = + +h u u hi

 
with  the gap between the deformed bodies, h pru  and  displacements in the -axis 
direction induced by pressure and by plastic strain respectively, hi  initial contact geometry 
and 

ru z

ω  normal displacement. 
Three levels of iterations are employed to solve the resulting model, requiring important 
computational resources. A simplified approach can be used [10,11], in order to avoid the 
complexity of the iterative formulation.  This is suitable for computing rough contact 
problems in particular, as pressure spikes induced by surface irregularities are leveled to 
an imposed limit. 
If the load W  transmitted through contact is sampled in small quantities, the loading 
increments change insignificantly the free surface deflections. Consequently, the term  
in eq. 

ru
(1), which accounts for the residual subproblem, can be neglected and the problem 

is reduced to the elastic formulation.  However, an upper limit of pressure on the contact 
area is usually assumed.  This limit is related to the elastic – perfectly plastic behavior of 
the softer material, as a function of the yield strength.   
A domain D , expected to include the contact area  is chosen. In this domain, contact 
geometry should be known, or can be extrapolated from existing data.  A uniform 
rectangular grid with non-overlapping interiors is considered in the plane of contact.  The 
elementary cell area is denoted by .  A Cartesian coordinate system, with 

A

Δ x  and y -axes 
aligned with the grid directions, having its origin fixed at a grid corner, is attached. 
Individual nodes are identified by a pair of indices , with 1( , )i j xi N≤ < , 1 yi≤ < N  and 

.  The nodal value of any continuous distribution  over D  is denoted by . x yN N N= ( , )f x y ijf
The limiting surfaces of the contacting bodies are sampled in two height arrays 
corresponding to grid control points (usually, elementary cell centroids).  Such data can be 
obtained from an atomic force microscope or an optical profilometer. The sum of the two 
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heights at node (  yields the composite surface height . For the half-space 
approximation to remain valid, the slope of composite geometry should be small. 

, )i j ijhi

The digitized pressure distribution generates deflections in the directions of the inner 
normals to corresponding surfaces. Normal surface deflections must match in the contact 
area; in-plane deflections can usually be ignored, according to Johnson, [6].  The bodies in 
contact being approximated by half-spaces, the deflections are aligned with the -axis in 
all points. The nodal values  can be calculated as a convolution of influence coefficients 
matrix K  with pressure p .  The following conditions must be also verified: 

z
iju

• No interpenetration is allowed: D . 0,( , )ijh i j≥ ∈

• Surface tractions cannot be tensile, only pressures: 0, ( , )ijp i j D≥ ∈ . 
• To account for plastic yielding, an upper limit on the contact pressure is imposed, 

related to the yield strength of the softer material: max, ( , )ijp p i j D≤ ∈ . 
This leads to the following discrete formulation of the simplified elastic – perfectly plastic 
contact problem: 

 
 , ( , )ij ij ijh u hi i j Dω= + − ∈ ; (2) 

 
1 1

yx NN

ij
i j

W
= =

= Δ ⋅ p∑∑ ; (3) 

 0, 0, ( , )ij ijh p i j A= > ∈ ; (4) 
 ; (5) 0, 0, ( , ) \ij ijh p i j D> = ∈ A
 max, ( , )ijp p i j A≤ ∈ . (6) 

 
The system of equations and inequalities (2)-(6) must be solved in nodal pressures, while 
the contact area, namely the set of nodes in contact, is also unknown. Both pressure 
distribution and contact area are determined in course of iteration, by trial-and-error. The 
adjustment of contact area is performed by exclusion of cells having negative pressures, 
and by (re)inclusion of overlapping cells (cells with negative gap).   
Since the work of Polonsky and Keer, [9], elastic contact problems with arbitrarily contact 
geometry are solved in a single-loop iterative scheme based on the conjugate gradient 
method, combined with either MLMS, [2], or DCFFT, [7], for the computation of elastic 
displacements.  In other formulations, [10,11], in order to account for the elastic-plastic 
behavior, an outer level of iteration, needed to enforce the static force equation (3), is 
used, resulting in increased computational requirements. The method advanced in this 
paper does not require an outer level of iteration, the load balance condition being 
enforced on every iteration by adjustment of nodal pressures. 
Before the start of iterations, the following input must be acquired: grid parameters, elastic 
parameters of involved materials, yield pressure, the accuracy goal for the conjugate 
gradient iteration.  
Initial non-negative values are chosen for ijp , verifying the force balance condition. The set 
of nodes for which the pressure is positive form the current contact area A . The set of 
nodes with pressures exceeding maxp  is denoted by P .  The following relation holds: 

.  Auxiliary variables are also initialized: P A D⊂ ⊂ 0ϖ = , .  The influence 
coefficients matrix K  is computed from grid parameters and elastic material properties.  
The following sequences are repeated until the accuracy goal is achieved. 

1oldR =

ANNALS of the ORADEA UNIVERSITY. 
Fascicle of Management and Technological Engineering, Volume IX (XIX), 2010, NR2 

 2.109 



Surface deflections  are computed as a convolution of K  and p  over D .  
Efficient calculation is available through DCFFT, [7]. The gap distribution is then obtained: 

, ( , )iju i j D∈

 
 , ( , )ij ij ijh u hi i j D= + ∈ . (7) 

 
In terms of conjugate gradient formulation, h  is the residual, namely an indication of how 
far the current estimation is from the exact solution. At the same time, h  is the direction of 
steepest descent and the first descent direction in conjugate gradient iteration. The gap is 
then normalized by its mean value h  over A P−  and the sum  is computed: R

 
 , ( , )ij ijh h h i j D← − ∈ ; (8) 

 2

( , )
.ij

i j A P
R

∈ −

= h∑  (9) 

 
The direction in which the next step will be made is then assessed. In the multidimensional 
space of pressures , ( , )ijp i j A P∈ − , every new descend direction is constructed from the 
residual, such as it is K -orthogonal to all previous residuals and search directions: 

 

 
, ( , ) ;

0, ( , ) ( ) .

old
ij ij

ij
ij

r R R d i j A
d

d i j D A P

ϖ⎧ P+ ⋅ ∈⎪= ⎨
= ∈ − ∪⎪⎩

−

R

 (10) 

 
The value stored in  is then updated: oldR

 
 . (11) oldR ←

 
A convolution of K with descend direction  is computed and normalized by its average 
value over . The resulting value  is used to derive the length 

d
A −P t α  of the step to be 

made in the direction of : d
 

 
( , ) ( , )

ij ij ij ij
i j A P i j A P

h d t dα
∈ − ∈ −

← ∑ ∑ . (12) 

 
In the next step, nodal pressures p  are backed up in  for relative error estimation.  The 
pressures in 

oldp
A P−  are then adjusted: 

 
 , ( , )ij ij ijp p d i j A Pα← − ⋅ ∈ − . (13) 

 
In the next step, all tensile tractions, namely negative pressures, are set to zero. The 
corresponding nodes are consequently excluded from the current contact area.  At the 
same time, the upper limitation of contact pressure is imposed. The value of contact 
pressure is limited to that of the yield pressure, which is usually three times the yield 
strength of the softer material: 

 
 max,( , )ijp p i j P= ∈ . (14) 
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The condition of non-overlapping surfaces is used next.  Pressures at nodes with 
vanishing pressure but negative gap are adjusted in the direction of the residual, with a 
step of size α , according to (13).  With this correction, the corresponding nodes re-enters 
contact area, as ijdα− ⋅  is always positive.  If no nodes satisfying this condition are found, 
auxiliary variable ϖ  is set to unity, otherwise to zero. 
The numerical load is then computed and the pressure distribution is adjusted to satisfy 
the static force equation. 

 
 

( , )
n

i j D
W

∈

= Δ ijp∑ ; (15) 

 nW W← ⋅p p . (16) 
 

The relative error is then compared with the accuracy goal, deciding if a new iteration must 
be performed: 

 
 

( , )

old
ij ij

i j A
p p Wε

∈

= −∑ . (17) 

 
NUMERICAL SIMULATIONS 
The newly advanced algorithm was implemented in a C computer code and several 
pressure distributions were obtained for different contact geometries. Pressure 
distributions profiles for Hertz contact geometry with elastic and elastic – perfectly plastic 
behavior were plotted in Fig. 2.  In Fig. 3, increasing loads are considered together with 
the elastic – perfectly plastic model.   
The value for the yield pressure was set to 5 .  Numerical simulations suggest 
enlargement of contact area with increasing values of W . 

GPa

 

 
Figure 2.  Elastic and elastic – perfectly plastic 

behavior for Hertz geometry,  3600W N=
Figure 3.  Elastic – perfectly plastic behavior for 

Hertz geometry with different loads 
 
Other types of axisymmetric contacts are considered in the following simulations.  A rigid 
conical indenter with rounded tip is pressed against an elastic - perfectly plastic half-space.  
The external cone angle is assumed small, so that half-space approximation holds.  
Closed form expressions for elastic pressure profiles, advanced By Shtaerman, [12], and 
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by Ciavarella, [3], predict an infinite pressure in the center of the contact when the cone is 
sharp, and a large, yet finite value, when the cone has a rounded tip. When a limiting value 
for nodal pressures is imposed, numerical pressure distributions follow the profiles 
depicted in Fig. 4. 

 

 
Figure 4.  Elastic and elastic – perfectly plastic contact, conical indenter with rounded tip 
 

The conforming contact between a circular flat-ended indenter with rounded edge and an 
elastic – perfectly plastic half-space is simulated in Fig. 5. The pressure risers induced by 
the edge effect are attenuated by rounding. However, nodal pressures predicted by the 
purely elastic model exceed the yield strength of the softer material. Elastic - perfectly 
plastic model is employed to accomplish a more realistic pressure description, as shown in 
Fig. 5. 
All numerical simulations predict that pressure profiles are not smooth at the interface 
between  and .  According to Diaconescu, [4], pressure should be of class  in order 
to satisfy requirements of the linear theory of elasticity.  This condition is not satisfied here, 
and a smooth pressure profile cannot be obtained using the proposed algorithm.   

A P 2C

However, for raw elastic - perfectly plastic models, this formulation may prove to be 
valuable due to its computational efficiency. Indeed, the speed of convergence of the 
elastic - perfectly plastic model is of the same order as that of the original purely elastic 
solver. 
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Figure 5.  Elastic and elastic – perfectly plastic contact, flat-ended indenter with rounding radius 

 
Once pressure distribution computed, the plastic region and the residual stresses can be 
computed using the compatibility method between elastic and plastic strains, as shown by 
Popescu, [10], and by Prodan, [11]. Their results suggest that predictions of the simplified 
formulation for elastic – perfectly plastic contacts match experimental evidences to a high 
degree of accuracy. 

 
CONCLUSIONS 
A fast numerical method to assess pressure distribution in elastic - perfectly plastic 
contacts is advanced in this paper. The residual part of displacement, namely contact 
geometry modification due to plastic flow, is neglected in the interference equation. 
Consequently, the elastic - perfectly plastic contact problem reduces to the purely elastic 
case, which can be solved efficiently using an iterative algorithm based on the conjugate 
gradient method. 
Plastic region contribution is accounted for in a simplified manner, by imposing an upper 
limit for nodal pressures on the contact area, related to the yield strength of the softer 
material. 
The modified conjugate gradient method is almost as fast as the one for the purely elastic 
case. The greatest decrease in speed of convergence is expected when modeling rough 
contact. 
Three types of axisymmetric contacts are analyzed. A Hertz quadratic indenter, a conical 
punch with rounded tip and a circular flat-ended indenter with rounding radius are pressed 
against an elastic-perfectly plastic half-space. In all cases, when assuming elastic - 
perfectly plastic behavior, an enlargement of contact area is predicted with increased 
loading. 
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The obtained pressures distributions can be used to further assess plastic strains and 
residual stresses in the elastic - perfectly plastic contact, according to compatibility theory 
between elastic and plastic strains.   
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