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Abstract: A fast algorithm to solve the inclusion problem for arbitrarily shaped eigenstrains is proposed and 
verified in this paper. A problem decomposition originally suggested by Chiu is employed. A solution to 
inclusion problem in infinite space was advanced in a companion paper. Pressure-free boundary condition is 
imposed with the aid of Boussinesq formulas and superposition principle, resulting in increased 
computational efficiency. Predictions for elastic fields due to a spherical inclusion are compared with existing 
analytical and/or numerical results, and a good agreement is found. The method appears well adapted for 
elastic-plastic contact modeling. 

 
1. INTRODUCTION 
An improved algorithm to assess stresses due to arbitrarily shaped eigenstrains in elastic 
isotropic half-space is advanced in a companion paper. Problem discretization is based on 
the existence of a solution for the influence coefficient, namely the linear elastic stress field 
induced in an isotropic half-space by a cuboid of uniform eigenstrains.   
The first exact solution to this problem, advanced by Chiu, [2], is based on the summation 
of infinite space solutions of two mirror-image cuboids, which leaves the half-space 
boundary free of (shear) tractions, and the solution for the half-space subjected to 
pressure, which is employed to simulate the pressure-free surface condition. Jacq et al. [3] 
implemented this solution in an elastic-plastic three-dimensional semi-analytical code, and 
applied a two dimensional (2D) fast Fourier transform (FFT) algorithm to speed up the 
summation.   
An alternative, direct approach to this problem was advanced by Liu and Wang [5]. Their 
analytical solution for the influence coefficients is based on Mindlin and Cheng's results, 
[7], and involves derivatives of four key integrals, resulting in increased model complexity.   
The algorithm advanced in this paper employs a simplified approach to impose the 
pressure-free surface condition, based on the assumption that spurious normal tractions 
corresponding to infinite space solution vanish outside computational domain.  Intuitively, 
contribution of eigenstrains located near the boundaries of the computational domain 
might be truncated. Consequently, the accuracy of the predicted elastic fields might be 
affected.  Therefore, numerical simulations are performed to validate the newly advanced 
algorithm. 

 
2. PROBLEM DECOMPOSITION 
As indicated by Chiu, [2], the influence coefficients can be obtained by decomposing the 
problem into three subproblems, as depicted in Fig. 1. The method consists in applying 
superposition principle to elastic states (b), (c), and (d), whose summation simulates the 
elastic state of the original problem (a). According to the principle of uniqueness of 
solutions in elastostatics, the found solution is the required one. 
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Figure 1.  Inclusion problem decomposition:  a. cuboidal inclusion in elastic half-space; 
b. cuboidal inclusion in infinite elastic space;  c. an image counterpart in infinite space;  

d.  a half-space with a pressure distribution 
 

Eigenstrains in state (b) are identical to those of the original problem (a), while in state (c), 
the cuboid is the mirror image of the original one with respect to half-space boundary.  
Eigenstrains in state (c) are chosen such as superposition of solutions (b) and (c) yields 
the same stress state as (a), except for the half-space boundary, where a spurious 
pressure is induced. State (d) suggests that, in order to simulate the pressure-free 
boundary condition, solution to this subproblem should be extracted from summation of 
solutions corresponding to states (b) and (c).   
A fast algorithm to compute elastic fields corresponding to states (b) and (c) was advanced 
in a companion paper.  Based on this development, the spurious normal traction induced 
on the half-space boundary, p , needed to solve the state (d) in Fig. 1, can be expressed: 
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 the source point (the control point 

of the cuboid). The influence coefficients  can be expressed from Hooke’s law, as 
suggested in [1]: 
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where μ  and λ  are Lame's constants, , mc = 1,8m  are the eight vectors linking the 
corners of the cuboid to the observation point, and  is a function whose fourth 
derivates with respect to coordinates 

( )mD c
′jx  are obtained by circular permutation in one of four 

categories, , ,  and , given in [1]. ,1D 111 ,1112D ,1122D ,1123D
If an arbitrarily shaped inclusion is divided into multiple cuboids of uniform eigenstrains, 
after superimposing the individual contributions of all cuboids, Eq. (1) becomes: 
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where notation with respect to coordinates was substituted by notation with respect to 
indexes of elementary cells.  As opposed to p  in Eq. (1), which expresses the effect of a 
single cuboid, Eq. (8) accounts for the contributions of all cuboids in the domain of 
analysis.  The stress induced in the half-space can then be computed: 
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The product in Eq. (9) is a two-dimensional convolution with respect to directions of  

r
1x  

and 
r

2x . Finally, the solution for the stress due to arbitrarily shaped eigenstrains in an 
elastic isotropic half-space results from superposition of solutions (8) and (9), as depicted 
in Fig. 1. 

 
3. ACCELERATION OF COMPUTATION 
The following step is to compute the stress state induced in the half-space by p . In 
existing formulations, [2-3], this stresses are expressed explicitly as functions of 
eigenstrains ε p

ij . This rigorous formulation results in increased model complexity.  It also 
has the disadvantage of limiting the application of spectral methods to two-dimensional 
case.  However, if the analysis domain is large enough, one can assume that the normal 
traction induced on the half-space boundary vanishes outside the computational domain.  
Therefore, the corresponding elastic state is due to term σ (0)

33  alone.  With this assumption, 
computation of elastic state (d) is reduced to the problem of a stress state induced in an 
elastic isotropic half-space by an arbitrarily, yet known, pressure (or normal traction).  
Solution of this problem is readily available, as corresponding Green functions are known 
from Boussinesq fundamental solutions. The influence coefficients  result from ijQ
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integration of Boussinesq formulas over elementary grid cell with respect to directions of 
r

1x  and 
r

2x .  The following primitives can be used: 
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with = + +2 2 2
1 2 3r x x x .   

Efficient computation of arising convolution products is available through Discrete 
Convolution Fast Fourier Transform (DCFFT) algorithm by Liu, Wang, and Liu, [4].  
The resulting computational advantage is more effective when using the newly proposed 
algorithm as part of an elastic-plastic contact code, [8].  Indeed, influence coefficients  
needed to assess stresses induced by arbitrarily pressure are shared with the elastic 
contact code. They are computed and stored as a 

ijQ

× ×1 2N N N3  array, with the aid of 
primitives (10) - (15). In Jacq’s formulation,  arrays of 3N × ×1 2N N
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 terms are needed, 
because the influence coefficients needed to impose free surface relief depend explicitly 
on both source and computation point depths. This double dependence also limit the use 
of spectral methods to two dimensions, thus being of order , [9]. In the 
simplified formulation advanced in this paper, as source domain (namely pressure domain) 
is only two-dimensional, as opposed to eigenstrains domain, which is three-dimensional, 
the computational order is decreased to O N  operations. 

1 2ogN N

1 2N 3( lN
The method for imposing the pressure-free condition assumes that spurious normal 
tractions on the half-space boundary vanish outside computational domain. This 
assumption requires a larger computational domain in order to minimize truncation errors.  
When simulating concentrated elastic-plastic contacts, plastic region is usually located 
under the central region of the contact area, occupying a hemispherical domain.  
Therefore, the newly proposed method is well adapted to this kind of problems. As 
inclusion problem has to be solved repeatedly in an elastic-plastic contact simulation, the 
overall computational advantage is remarkable, allowing for finer grids or smaller loading 
steps to reduce discretization error. 

 
4. PROGRAM VALIDATION 
Using results presented by MacMillan, [6], Mindlin and Cheng, [7], derived the 
thermoelastic field due to a spherical inclusion in a half-space. Their analytical formulas 
were used as reference by Liu and Wang, [5], and also by Zhou, Chen, Keer, and Wang, 
[10]. These results are also used to validate the computer program advanced in this paper. 
To this end, a cuboidal domain, of elastic parameters ν  and  and sides , 
is considered with a spherical inclusion of radius 

E = = =1 2 3L L L a
= 7 16R a , centered at 1 2 3( 2, 2, 2L L L ) .  

In this configuration, the computational domain exceeds the inclusion domain with only a 
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small amount.  In most elastic-plastic contact problems, the computational domain is 
chosen to be much larger than the region with plastic strains.   
Firstly, the inclusion is assumed to have uniform dilatational eigenstrains, ε δ=p

ij ijq , with  

a constant and 

q

δ ij  Kronecker's delta.  Dimensionless stresses σ σ σ0=r r
ii ii  are defined as 

ratios to σ ν−0 3(1 ))= / (Eq , and dimensionless coordinates as ratios to corresponding 
cuboid sides: =i i ix x L .  A  discretization was imposed in the computational 
domain. 

× ×96 96 96

 

           
a.      b. 

Figure 2.  Normal stresses σ r
ii  along the 1x - axis: a. this code; b. Zhou, Chen, Keer, and Wang, [10] 

         
a.      b. 

Figure 3.  Normal stresses σ r
ii  along the 3x - axis: a. this code; b. Zhou, Chen, Keer, and Wang, [10] 
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a.      b. 

Figure 4.  Normal stresses σ r
ii  along a horizontal axis passing through the center of the sphere:  

 a. this code; b. Zhou, Chen, Keer, and Wang, [10] 
 
The distribution of σ33

r  in Fig. 2 shows that normal tractions vanish on the half-space 
boundary, thus satisfying the pressure-free surface condition imposed in the algorithm.  
Stress distributions in Figs. 2.a – 4.a show a good match with analytical formulas 
advanced in [7] and with numerical predictions of Zhou, Chen, Keer, and Wang, [10], 
giving confidence in the newly proposed algorithm. The maximum errors compared to 
analytical formulas are located at the boundary of the spherical inclusion, and can be 
attributed to discretization error, namely to discretization of the sphere into cuboids, and 
not to problem decomposition. A fine resolution is required to capture the detailed behavior 
of the induced stresses at the spherical interface.  However, this should be correlated with 
the available computational resources.   
Liu and Wang, [5], present an extensive set of results, including the case when 
eigenstrains vary linearly with the distance from the center of the spherical inclusion. The 
algorithm described in [5] is based on a different approach, with no problem 
decomposition.  In order to reproduce these results, a spherical inclusion of radius a  is 
considered in a cuboid of sides , = =1 2 4L L a =3 3L a . The center of the inclusion is located 
at depth . Eigenstrains are assumed to vary proportional with the distance  from the 
center of the sphere: 

0Z d

 
  ε δ= −(1 )p

ij ijd a q . (16)   
 

Distributions of σ33
r  along the 3x  - axis and in plane =2 0x , for different values of , are 

depicted in Fig. 5.  For this kind of inclusion, simulations predict that stress 
0Z

σ33
r  is almost 

linear inside the sphere. 
All presented distributions reveal that numerical predictions obtained using the newly 
proposed algorithm agree well with analytical or numerical results already published.  
Consequently, the error introduced by truncation of normal tractions in infinite space partial 
solution can be considered as negligible for the type of inclusions investigated in this 
paper. Application to elastic-plastic non-conforming contact problems is therefore 
straightforward. 
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a.      b. 

Figure 5.  Dimensionless stress σ33
r  along the 3x  - axis, different : 

a. this code; b. Liu and Wang [5] 
0Z

 
5. CONCLUSIONS 
An algorithm for efficient computation of elastic fields due to arbitrarily shaped eigenstrains 
is validated in this paper by comparison with existing analytical and/or numerical results.  
This validation is required as the simplified method to impose the pressure-free surface 
condition in Chiu's inclusion problem decomposition implies truncation.   
The computational advantage of the method yields from the efficiency of the algorithm for 
assessment of stress field in an elastic half-space due to an imposed pressure distribution.  
It requires only  two dimensional DCFFT computations, as opposed to existing 
formulation, [9], in which  two dimensional DCFFTs are needed. 

3N
2
3N

Numerical predictions agree well with explicit formulas advanced by Mindlin and Cheng for 
a spherical inclusion of uniform eigenstrains.  When eigenstrains are assumed proportional 
to distance from the center of the sphere, Liu and Wang's numerical results are used to 
benchmark the newly advanced algorithm. In all cases, a good agreement with existing 
results is found. 
The newly proposed method is well adapted to elastic-plastic non-conforming contact 
simulation, and can be used to impose finer problem discretization, as shown in [8]. 
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