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Abstract The geometrical structure of sintered steel pores and their distribution is described in terms of 
fractals. The found correspondence between pore distribution and crack is examined. The fractal dimensions 
of crack generated from pores model (due to the simple proposed geometrical rule) and real fatigue crack 
are compared. 
 
1. INTRODUCTION TO FRACTAL MODELS OF FATIGUE PROCESS 
In the continual medium approximation we neglect short range scales compa-rable to 
distances between particles. On the other hand many important processes (like fatigue for 
example) take place or correspond to other range of length. 
Under externai load applied to a sample all degrees of freedom at any scale range 
become excited. The input energy measured in terms of hysteresis loop flows down from 
macroscopic scale to deeper levels  fig. 1. 
 
 

 
 
 

Fig.1 The energy accumulation in a material. The fatigue defect born at mesoscopic scale. 
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Finally at micro-level we obtain some heat outflow. As we know heat corresponds to 
oscillations of atoms. 
Not all input energy flows out as a heat. Some part, called cold work, becomes stored at 
defects at mesoscopic scale. That entails the fatigue process related to an externai 
loading. The most important theoretical problem is to find the correspondence between 
macro- and meso-scopic picture of fatigue. 
Defects at any stage of evolution are modeled by means of fractals with fixed fractal 
measure and dimension. Generally models of such type are constructed in two steps. At 
first we need state equation for fractal defects which links fractal variables.  
The cold work ε stored at defect is assumed to be linear in fractal measure vD but the 
proportionality factor a(D) depends on fractal dimension D. Note that the fractal measure 
has been understood as and represented by suitable projective quantity. Next representing 
the projective quantity by suitable powers one obtains: 
 

ε = a(D) vD                                                 (1) 
 

The mesoscopic length scale may also vary during defects evolution. 
 
2. PORES IN SINTERED STEELS 
The sintered steels are very brittle material with iniţial structure of pores in-volved by 
powder metallurgy. During fatigue process we observe the cracks growing between pores. 
The iniţial structure of defects evolves to final transparent crack in a sample. We have to 
model both: pore structure and fatigue crack. 
According to applied range of magnification different elements of pore (and other defects) 
structures are put forward. The whole analysis is limited by discrete structure of a matter at 
atomic scale. Since we are interested in the correspondence bewteen structure of pores 
and final fatigue crack we begin with large magnification. 
The example of pores are depicted in the Fig. 2. During fatigue process we observe the 
growing bridges between pores. In turn pores do not change in any noticeable way..  
 
 

 
 

Fig.2  The two example  of increase in pore 
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However there is not any visible connection beween structure of individual pores and 
growing transparent crack. 
At first we look for the suitable range of magnifications. For each picture we estimate (box-
counting) fractal dimension for observed structure of pores. Next computer finds contours 
of all pores and once more we evaluate fractal dimension for contours solely. We seek for 
range of magnifications in which the above two fractal dimensions coincide. An example is 
shown in the fig. 3.  
 
 

 
                Fig. 3.a.                                                                            Fig. 3.b. 
      The observed pores and fatigue crak.                         The pores and all defects used in fractal 
        dimension estimation. 
 
Then fractal dimension will depend on linear size of pores and their distribution solely but 
not on the internai structure of separate pores. Since details of individual pore form are not 
important we can model pores by points but the distribution of points should have the 
same fractal dimension as real structure. 
Sintered steels are produced from powders and during technological process high 
pressures are applied. Therefore structure of grains, being dense packed, should be 
locally close to hexagonal one. In turn pores originate predominantly at surfaces of adjoint 
powder grains. In effect we expect the hexagonal structure to be visible also in spaţial 
distribution of pores. At large macroscopic scale the pore distribution becomes uniform 
and hexagonal order is missing. In effect the fractal modeling pore structure should be 
composed with hexagonal cells. Each cell contains a fractal with dimension close to value 
obtained from experimental observations. 
 
3. CRACK GROWTH IN SINTERED STEELS 
We generate a crack according to simple geometrical rule, which does not favorize any 
length scale. Suppose that we have two clouds of defects with a single common point. 
Then a crack should run through this common point and inside a cloud of defects we 
approximate crack by straight segment. Under current resolution we treat the cloud of 
defects as uniform defect. Increasing magnification we notice that iniţial cloud divides itself 
into smaller ones and we once more apply above crack form approximation. The 
procedure has been depicted in the fig. 4.  
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Fig.4. The intersection of the infinite secvence of defect structure inside. 
 
The model crack (in fact formed from von Koch type curve shown in the Fig. 5) has fractal 
dimension In 5/In 3 = 1.47. At the same time fractal dimension of real crack equals 1.51. 
For both models: pore distribution and crack form, the model and experimental values of 
fractal dimensions nearly coincide. Model values are slightiy smaller because our 
construction doesn't employ any overîaping. Moreover the  dusts filling cells are very 
regular. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5. Fatigue crak inthe steel 
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To estimate the characteristic linear size of cells we evaluate numerically the relative 
partition entropy of fractal defined in the same way as in the ergodic theory, or in the 
theory of dynamical system.  
To compare the fig. 5 presents the observed fatigue crack in sintered steel from the work . 
Some fragments of observed pattern have form quite close to the constructed fractal 
model. 
The constructed models of pore distribution and cracks may be applied to study other 
important characteristics like stress intensity factor, the energy conserving cascade 
process examined in [3], [4]. 
 
4. CONCLUSION 
The growing fatigue crack in sintered steel can be observed at many distinct length scales. 
At macroscopic level (large comparing to characteristic size of cell) the crack can be 
approximated by a smooth curve. No fractal character becomes visible. 
At the opposite limit, at scale comparable to individual pores the crack contour is also quite 
close to smooth curve with relative low fractal dimension. Moreover there is no any 
correspondence between separate pores and fatigue crack form. 
The crack form appears to be sensitive to the pore distribution solely. At the intermediate 
scale length when pores become points object there is close correspondence between 
fractal distribution of pores and fractal form of the final crack. 
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