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Abstract: This paper aims to present special issues concerning the analysis of mobile robots with kinematic 
motion effects on the stability study. In the analysis, the authors used inverse kinematics, which enables 
rapid modelling and identifying solutions as regards the stability of bipedal robots.The symbolic solution for 
kinematics equations of biped robots is of great importance for the efficient controllability of these robots. 
The following article focuses on the biped robot center of gravity simulation and control  handle with the aid 
of mathematical modeling methods (in MATLAB) 
  

1. INTRODUCTION 
 
For a biped robot the sole position and orientation is known, defined within the 

domain of exterior coordinates, if a q


 vector is given with join coordinates. In the case of a 
robot with n freedom degree, the vector of joint variables is [2], [6] the following: 

 

  .q,q,......,q,qq
T

n1n21 


     (1.1) 

 
And the vector of unknown exterior coordinates is the following: 

  .
T

qn1qnq2q1q x,x,......,x,xx       (1.2) 

 
The equation below is the only solution for the so called direct kinematics problem. 
 

).qf(xq


       (1.3) 

 
If we know sum of the joint’s setup and from this we define the coordinate system’s 

position, according to the sole’s centre point, as well as its orientation, thus we solved the 
direct kinematics problem. Inverse kinematics problem means that if the sole’s expected 
position and orientation (within the exterior coordinates) is known, and then with which 
joint setups can we obtain this. In other words we can say that we are looking for only 
solution. 

 

).(xfq q

1


      (1.4) 

 
This task is more complex then the direct kinematics problem, since it is not linear, 

we have to solve equations containing trigonometric functions. The symbolic solution for 
kinematics equations of biped robots is of great importance for the efficient controllability of 
these robots. 

 The symbolic form of the kinematics equations describes explicitly in trigonometric 
form the biped robots’ sole’s position and orientation according to the joint coordinates. In 
this case, the equation in the range of real numbers can be solved with the minimal 
possible operations. 
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2. Kinematic modeling 
 

Direct kinematics problem is to define all relationships that end-effector position 
(foot of biped robot) based on joint coordinates practically [2], [4], [5], it ensures internal 
coordinates conversion (joint) Coordinate external (operational).  

 

Biped robot kinematics equations are (Figure  1.): 

 

 

Figure  1. Kinematic model 
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Where: c(q234)=cos(q2+ q3+ q4) and s(q234)=sin(q2+ q3+ q4) 

Convert coordinate joint operational details is done by solving the direct kinematics 
problem and coordinate joint operational coordinate conversion is done by solving the 
inverse kinematics problem. 

Inverse kinematics problem allows the calculation [2], [6], [3] coordinates of the 
joints, which provide end-effector in the desired position and orientation, given the 
absolute coordinates (operational). When the problem is the inverse kinematics solution, it 
is the inverse geometrical model. If we cannot find an analytical solution for inverse 
kinematics problem (which happens quite frequently) we resort to numerical methods, but 
whose weakness is the sheer volume of calculations. The most common method is 
Newton-Raphson method. Among these features is remarkable for the way it offers and 
Khalil Pieper and Paul's method. Pieper and Khalil's method allows solving inverse 
kinematics problem regardless of the values of the robot geometrical 

 

3. Centre of gravity 
 

During walking, the feet are subjected to the action of forces [2], [1], [3], [7] and 
moments of inertia and gravity forces. Balancing the forces of gravity is to reduce the 
mechanical work consumed for drive motor. The position of equilibrium of a system subject 
to stationary and links under the action of forces is given, is called stable equilibrium, if for 
a sufficiently small arbitrary variation of the coordinates of its points and arbitrary speeds 
sufficiently small print of these points, the system will move all the time remaining in the 
vicinity of equilibrium position. To determine the center of gravity G of a facility plan is 
sufficient to determine the position vector rg thereof with the relationship: 
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Where: mi is the mass of the i element; ri is the position vector of center of gravity of 
element i.   
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During walking robot must be stable. This means that its centre of gravity must fall 
within the polygon (Figure 2.) which consists of the two legs of the robot. If the left leg is 
raised then the centre of gravity must fall within the polygon of the right leg (Figure 3.). If 
the projection centre of gravity doesn’t fall within the polygon, the robot is unstable. Then it 
is necessary to tilt (Figure 3.) robot to the right. We know direct and inverse kinematics of 
the robot and in this way we can calculate the coordinates of the joints. After calculating 
the joint coordinates it must be checked if the centre of gravity falls within the polygon or, if 
other compensation is needed for the robot to tilt to the right until the centre of gravity 
projection falls within the polygon. Easier to solve the problem can be done with an 
algorithm based on direct and inverse kinematics, with which to verify and ensure the 
necessary compensation to realise that the position of gravity centre projection of the robot 
is falling inside the stability polygon. 

Bipedal walking is difficult when viewed as a general dynamic system. The 
dynamics are high degree-of-freedom, nonlinear, under-actuated, naturally unstable, and 
discretely change from step to step. These combined characteristics place bipedal walking 
[5] control outside the realm of traditional book control techniques.  It is in part due to these 
difficulties that a large number of different control methods have been developed, and no 
single method has proven advantageous over the others. 

During walking, the feet are subjected to the action of forces [2], [1], [3], [7] and 
moments of inertia and gravity forces. Balancing the forces of gravity is to reduce the 
mechanical work consumed for drive motor. The position of equilibrium (Figure  4.) of a 
system subject to stationary and links under the action of forces is given, is called stable 
equilibrium, if for a sufficiently small arbitrary variation of the coordinates of its points and 
arbitrary speeds sufficiently small print of these points, the system will move all the time 
remaining in the vicinity of equilibrium position.  

 

Figure  2. Robot model and polygon by two 

leg ( mc- weight center) 

 

 

 

 

 

 

Figure  3. Robot model and polygon by one leg 
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Figure  4. Centre of gravity simulation one position 

 

 

Figure  5. 3D Steping and Center of gravity position  
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This means that its centre of gravity must fall within the polygon (Figure 4.) which 
consists of the two legs of the robot. We know direct and inverse kinematics of the robot 
and in this way we can calculate the coordinates of the joints. 

The step (Figure.4.) to raised the left leg or right leg and remains below the leg 
centre of gravity must fall within the polygon of the remains below the leg. If the projection 
centre of gravity doesn’t fall within the polygon, the robot is unstable. In a Figure 4. is a 
five-step motion control of the Humanoid robot until a stable position. The only engines  
give last joints position so you avoid the potential for rollover. In advance placed in the 
raised leg as as position as a foot heel is in the ground presently hip moving in advance. 
The Figure 5. may see in 3D step simulation, that the Inverse kinematics solution 
controlled in path and  a direct kinematics is controlled  a center of gravity and stability 
control. So dynamic motion control of the robot is standing in to leg keep up without having 
to disrupt 

 

4. Conclusio 
 

If a biped robot’s inverse kinematics problem is solved well, then this helps a lot on 
the stability, because the well positioned ligament’s overall centre of weight has to fall in 
the given sole’s polygon, so that the robot wouldn’t tumble over. Inverse kinematics 
problem allows the calculation coordinates of the joints, which provide end- effector in the 
desired position and orientation, given the absolute coordinates (operational). Easier to 
solve the problem can be done with an algorithm based on direct and inverse kinematics, 
with which to verify and ensure the necessary compensation to realise that the position of 
gravity centre projection of the robot is falling inside the stability polygon. 
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