

Abstract—Product and process optimization is a special

field of interest in modern engineering. A particularly
interesting subject, with great implications on the time and cost
of the design and manufacturing of products is the structural
design optimization. Traditionally employed by mathematical
optimization procedures, modern approaches propose daring
and original techniques based on natural processes and
phenomena. The current paper presents the types of
optimization usually employed in structural problems and an
overview of the evolutionary computing paradigm, with its two
main branches: evolutionary algorithms and swarm intelligence.

Keywords—evolutionary computing, structural
optimization, multiobjective optimization, FEA

I. INTRODUCTION
ROCESSES and products optimization has always been
a main concern for engineers. Looking for better

behaving, easier to obtain and cheaper products is an
intrinsic aim of engineering. Structural optimization
focuses on finding the best shape and size of the elements
being designed in terms of material quantity, compliance,
ease of manufacturing and possibly other objectives.

In structural optimization, there are three different
approaches depending on the chosen parameters to be
optimized: optimizing the topology, shape or size of
elements. Not in all cases a clear distinction between the
three can be made and their exact definition (which
parameter belongs to which kind of optimization) is

dependent on the problem to be solved, being different
for skeletal structures (trusses and frames) and for
continuum ones (plane and volumetric elements).
Fig. 1 presents visually the possibilities of optimization
for a cantilever beam, considered here a plane continuous
element, loaded at the free end with a load perpendicular
to the beam axis. The original cantilever design space to
be optimized is presented in Fig.1a. The optimization
alternatives are:
1) Topology optimization (Fig.1b) – find the approximate
initial layout for material distribution inside the design
space;
2) Shape optimization (Fig.1c) – find the best shape by
changing the control points of the parameterized contour;
3) Size optimization (Fig.1d) – describe the layout in
terms of a number of parameters and find the best set of
values for these parameters.

In the traditional approach, the optimization is carried
out for a single type at once, keeping all the other
parameters fixed. Topology is used to find an initial
rough layout of the best solution inside the design space
while shape and size optimization are carried out in a
subsequent step to fine tune the model. However, for
better results and a seamless optimization procedure there
are several attempts at performing the optimization in and
integrated manner, mixing in the same problem
formulation topology, shape and size parameters and
doing all the optimizations simultaneously [1] - [3].

From a historical point of view, the first optimization

EVOLUTIONARY COMPUTING IN
STRUCTURAL DESIGN OPTIMIZATION

PROBLEMS

Razvan CAZACU

1
, Lucian GRAMA

2

1 Industrial Engineering and Management Department, Petru Maior University,
 Nicolae Iorga Street, No. 1, Targu Mures, Romania, razvan.cazacu@ing.upm.ro
2 Industrial Engineering and Management Department, Petru Maior University,
 Nicolae Iorga Street, No. 1, Targu Mures, Romania, lucian.grama@ing.upm.ro

P

a) b) c) d)

F

L

H

P1

P
2

P
3

P6
P4 P5

Fig.1. Structural optimization possibilities for a cantilever beam

ANNALS OF THE ORADEA UNIVERSITY
Fascicle of Management and Technological Engineering

ISSUE #1, MAY 2013, http://www.imtuoradea.ro/auo.fmte/

49

methods were the analytical, mathematical programming
ones. For the general case of nonlinear objective
functions or constraints, most of the methods are
gradient-based, implementing a variation of the Newton
algorithm, requiring continuous, differentiable functions
of real parameters.

Relatively more recent, to overcome the obvious
problems classical methods were facing especially for
computationally complex problems, a new family of
optimization techniques was born: metaheuristic methods
(from the Greek words “meta” – here meaning “extra” or

“higher level” - and “heuriskein” – meaning “to find” –
for a combined definition of “higher level optimum

finding methods”). Metaheuristic methods generally use

stochastic optimization, generating random solutions in
the design space and trying to iteratively improve them
with respect to the fitness function. As opposed to the
gradient-based methods, metaheuristic methods:
1) Usually make no assumptions about the optimization
problem, making the formulation easier and more
general;
2) Can escape local solutions, being able to make jumps
in the search space and find better solutions in other
areas;
3) Need no information about the derivative of the
function;
4) Can optimize discrete or noisy functions, not requiring
them to be continuous or differentiable;
5) Scale well with the increase of dimensions; classical
problems suffer from the “dimensional hell”, being

extremely difficult to be applied to structural
optimization, typically a problem with a large number of
parameters, thus dimensions;
6) Can handle very large and complex design spaces.

On the other hand, the major disadvantage of
metaheuristics is that they don’t guarantee a solution is

ever found and have no knowledge of if and when the
global solution is obtained. The iterative process is
terminated after a fixed set of steps or after a solution is
found within a prescribed range. At the same time, due to
their stochastic nature, it’s probable that different runs of

the algorithms will result in different solutions. However,
practice has shown metaheuristic methods work well for
most optimization problems and do find optimal solutions
regardless.

Metaheuristic algorithms can be divided in two major
families: local search and evolutionary computing. While
evolutionary computing will be detailed in the following
paragraphs, local search moves iteratively towards the
optimum by applying local changes to a randomly
generated initial solution. Most prominent local search
methods are hill-climbing and simulated annealing.
Simulated annealing in particular is pretty cheap in terms
of calculation cost and can also be used to search for
global optima but its behaviour in performing structural
optimization has been shown to be less effective than in
the case of other metaheuristic methods [4]. More, its

efficiency is heavily dependent on parameters choice,
which in turn is problem specific and requires knowledge
about the actual problem being solved. Setting the right
values for the parameters becomes increasingly difficult
with the dimensions, i.e. the number of problem
parameters.

II. EVOLUTIONARY COMPUTING OVERVIEW
Evolutionary computing refers to what is probably the

most exotic group of optimization methods, methods
generally inspired from natural phenomena or behaviors.
They are said to be population-based techniques as they
work simultaneously with an entire group of solutions
(called a population) and evolve them iteratively towards
the optimum.

As part of the metaheuristic family of optimization
techniques, evolutionary computing methods implement
algorithms independent of the actual problem being
solved. However, knowledge about the problem can be
leveraged by adapting the general optimization
techniques to incorporate certain specific details.
Properly handled, these adjustments can lead to
significant increases in algorithm efficiency, both in
terms of solution quality and computational effort and
time. As a result, problem specific variations of the
general optimization methods are worth pursuing in
scientific research.

To emphasize this idea even more, it has been shown
that the performance of all optimization methods is
almost the same if averaged over all optimization
problems. This principle has been formalized under the
name of “no free lunch theorem” [5]. To put the theorem
in other words, if a certain technique shows very good
performance for a certain type of optimization problem, it
will probably have a less than average performance on
other problems. It is thus important to study for each type
of optimization problem which algorithms are more
suitable and which are not.

 There are two major subfields under the evolutionary
computation umbrella:
1) Evolutionary Algorithms (Examples: Genetic
Algorithm, Genetic Programming, Memetic Algorithm,
Evolutionary Programming, Evolutionary Strategy);
2) Swarm Intelligence (Examples: Particle Swarm
Optimization, Ant Colony Optimization, Artificial
Immune System).

Evolutionary Algorithms (EA) are inspired by the
evolution mechanism of species. It tries to evolve a
population of individuals, each a possible solution to the
optimization problem, across multiple generations
towards the optimal solution, imitating natural evolution
concepts such as genes, fitness, selection, reproduction
and mutation.

Swarm Intelligence (SI) mimics the collective
behaviour of large organized systems, usually inspired
from nature: flying of bird stocks, fish schooling, ants

ANNALS OF THE ORADEA UNIVERSITY
Fascicle of Management and Technological Engineering

ISSUE #1, MAY 2013, http://www.imtuoradea.ro/auo.fmte/

50

search for food, raindrops falling, mass systems
interaction, etc. As in the case of EAs, each individual in
the population represents a feasible solution to the
problem. Individuals are not moving in the search space
(design space) in an intelligent way, but following simple
principles involving local and global information.
However, the sum of interactions between them and their
environment gives the group as a whole intelligent
behavior. The movement of the population is expected to
be towards the optimum position in space (optimal
solution).

The most well documented algorithms are:
1) Genetic Algorithm – the most representative
Evolutionary Algorithm, first proposed in 1975 [6];
2) Particle Swarm Optimization - the most representative
Swarm Intelligence method, first proposed in 1995 [7].

Not only are these algorithms the most representative
for their family, but as shown in [8] they have been
proven to be the most effective for structural design
optimization on several benchmark problems. Some
works compare the two methods as implemented in
different optimization problems [4] while others suggest
incorporating concepts from one technique into the other
can lead to very good results.

In both EA and SI, the value of each individual is
evaluated using a fitness function, the actual function to
be optimized. To move the population in the direction of
better fitness values and thus search for the optimum the
algorithms are biased towards fitter individuals. In order
to apply evolutionary computing optimization one needs
procedures to encode and decode the problem and to
evaluate the fitness of the encoded solutions. These are
the only problem specific aspects of the methods, the ins
and outs of otherwise true black-box optimization
algorithms. Encoded individuals are usually represented
as arrays of parameters values. Constraints can also be
modeled, either as limits for the parameters or they can
be evaluated from the encoded solution. In the latter case,
to assure individuals not satisfying a certain constraint
have less chance of influencing the general fitness of the
group they have their fitness value penalized with an
amount proportional to the incompliance of the
individual. Typical constraints for structural design
optimization are stress, displacement or vibration modes.

The optimization problem can be formalized as:
),:)((nXXxf Min/Max (1)

In the above, f is the objective function and x is an n-
dimensional vector containing the design parameters,
belonging to the solution space X. The objective function
in structural design is usually the total mass of the model,
expressed in terms of design parameters. The model is
subjected to constraints of stress and/or displacement. To
evaluate all these Finite Element Analysis (FEA) is used
and each simulation is costly in terms of computational
time and effort. Population-based optimization
techniques require a very large number of fitness

evaluations (hundreds or even thousands), equal to the
number of individuals multiplied by the number of
iterations. To reduce the number of evaluations, a
technique called fitness approximation [9] - [11] can be
employed, leading to huge gains in algorithm running
time. Fitness approximation implies building an
approximate, easier to use model (also called meta-
model) for the fitness function and apply it as a surrogate
for the real evaluation. The approximate models use
sampled data (for which an exact evaluation is needed)
from the solution space and use them to find the function
values for the other points. They can use polynomial
interpolation, regression models, neural networks and
other approximation techniques. To overcome the
problems that can occur when using exclusively the
approximate model, such as converging to local optima,
it is advisable to use a compromise and evaluate some of
the solutions with the approximate model and some of
them with the exact method.

One of the best methods for structural optimization
fitness approximation, a problem with an n-dimensional,
discrete design space is the Adaptive Fuzzy Fitness
Granulation [12]. The technique uses an adaptive group
of solutions called granules, which have their fitness
value calculated using exact evaluation. If a new solution
is similar enough to one of these solutions, its fitness is
not calculated but inherits the fitness value of the fuzzy
granule it resembles. If not, the new solution is evaluated
using the exact method and added to the group of
granules. The adaptive nature of the method comes from
the fact that the group of solutions is dynamic, receiving
new solutions which are not similar to any in the group
and dropping solutions for which no similarity is found
for a while, but also from the fact that the granules radius
of influence is adapted as needed during the run of the
algorithm to allow for exploitation of good solutions.

III. MULTIOBJECTIVE OPTIMIZATION IN EVOLUTIONARY
COMPUTING

Structural optimization is often times carried out with
respect to more than one objective function. This is
called Multi-objective Optimization (MO). The process
can involve the optimization of mass, compliance,
manufacturability and others, under the constraints of
stress, displacement or vibration modes. The constraints
can also be modeled as objective functions, leaving the
designer the decision of choosing for example a lighter
model with bigger maximum stress or a heavier model
with a bigger safety factor. The formalization of the MO
is similar to single-objective optimization, but instead of
the single function f, we minimize or maximize a vector
of m objective functions F(x):

),:)((nm XXxf Min/Max (2)
One possible approach to solve MO is to define a

super fitness function which averages the values of the

ANNALS OF THE ORADEA UNIVERSITY
Fascicle of Management and Technological Engineering

ISSUE #1, MAY 2013, http://www.imtuoradea.ro/auo.fmte/

51

individual fitness functions, each weighted with its
relative importance in the overall fitness. This super
value is then used as the single measure of solution
quality. One of the biggest problems with this method is
that it’s extremely difficult to find the right set of
weighting values that can correctly reflect the total
quality of a solution. More, it hides possible feasible
solutions from the designer, making decisions instead of
them based on rather arbitrary criteria.

To overcome these limitations, the concept of Pareto
efficiency can be used. A solution is considered Pareto
efficient or Pareto optimal if it’s not strictly dominated by

any other known solution. A solution strictly dominates
another if for all fitness functions it evaluates to a better
or at least equal value. Fig. 2 exemplifies a minimization
problem with respect to two fitness functions f1 and f2.
Solution A strictly dominates solution B, as it has a
smaller value for both functions. On the same graph, the
Pareto limit (or frontier) can be observed. This is the
group of solutions which are Pareto efficient, not strictly
dominated by any other solution in the population.

f1(x)

f2(x)
Pareto limit

Pareto inefficient solution

Pareto efficient solution

f1(A)

B

A

f1(B)

f2(A)

f2(B)

Fig.2. Pareto Efficiency for 2 objective functions

Multi-objective optimization genetic algorithm

(MOGA) is the multi-objective variant of the genetic
algorithm. The algorithm is more complicated than the
standard single-objective one, one the biggest difficulties
being setting the stopping criteria correctly. To overcome
these issues, improvements to the standard MOGA have
been proposed in several papers, including [13].

IV. CONCLUSIONS AND FURTHER RESEARCH
As shown by the increasing number of researchers

involved in this field and the huge effort invested in
refining existing and developing new methods,
metaheuristic optimization has become a central part in
engineering optimization. The clear advantages

highlighted in this paper when compared to analytical
methods recommend metaheuristics and evolutionary
computing in particular as the preferred way of
performing structural optimization.

Evolutionary computing works with populations of
solutions in an iterative way, trying to evolve the
individuals, each a candidate solution, towards the local
and global minima of the objective function. The two
most representative algorithms are evolutionary
algorithms and particle swarm optimization. These two
methods are the most studied and well-developed of all
evolutionary computing algorithms. Although there is no
method that can perform at maximum efficiency for all
optimization problems, many papers show that the two
mentioned here are generally the most effective for
structural optimization. As a continuation of this study,
we will detail in a future paper the inner workings and
optimization possibilities offered by the genetic
algorithms and particle swarm optimization.

REFERENCES
[1] Fourie, P.C. and Groenwold, A.A., “The particle swarm

optimization algorithm in size and shape optimization”,
Structural and Multidisciplinary Optimization, Volume 23, Issue
4, 2002, pp 259-267.

[2] N. Noilublao and S. Bureerat, “Simultaneous topology, shape and
sizing optimisation of a three-dimensional slender truss tower
using multiobjective evolutionary algorithms”, Computers and
Structures, Volume 89, Issues 23-24, 2011, pp 2531-2538.

[3] M. Zhou et al, “An integrated approach to topology, sizing, and
shape optimization”, Structural and Multidisciplinary
Optimization, Volume 26, Issue 5, 2004, pp 308-317.

[4] S. Sanchez-Caballero et al, “Recent Advances in Structural
Optimization”, Annals of the Oradea University, Fascicle MTE,
Volume XI (XXI), 2012, pp 2.118-2.127.

[5] D.H. Wolpert and W.G. Macready, “No Free Lunch Theorems for
Optimization”, IEEE Transactions on Evolutionary Computation,
Volume 1, Issue 1, 2007, pp 67-82.

[6] J.H. Holland, “Adaptation in Natural and Artificial Systems”,
University of Michigan Press, 1975, ISBN 0-262-08213-6.

[7] J. Kennedy and R. Eberhart, “Particle Swarm Optimization”,
Proceedings of IEEE International Conference on Neural
Networks, Volume 4, 1995, pp 1942-1948.

[8] R.C. Eberhart and Y. Shi, “Comparison between genetic
algorithms and particle swarm optimization”, Proceedings of the
7th International Conference (EP98 San Diego), Volume 1447 of
Lecture Notes in Computer Science, 1998, pp 611-616.

[9] Y. Jin, “A comprehensive survey of fitness approximation in
evolutionary computation”, Soft Computing, Volume 9, Issue 1,
2005, pp 3-12.

[10] L. Shi and K. Rasheed, “ASAGA: an adaptive surrogate-assisted
genetic algorithm”, GECCO '08: Proceedings of the 10th annual
conference on Genetic and evolutionary computation, 2008, pp
1049—1056.

[11] J. Ziegler and W. Banzhaf, “Decreasing the number of
evaluations in evolutionary algorithms by using a meta-model of
the fitness function”, Proceedings of the 6th European
Conference in Genetic Programming (EuroGP'03), Volume 2610
of Lecture Notes in Computer Science, 2003, pp 264—275.

[12] M.R. Akbarzadeh-T, M. Davarynejad and M. Pariz, “Adaptive

fuzzy fitness granulation for evolutionary optimization”,

International Journal of Approximate Reasoning, Volume 49,
Issue 3, 2008, pp 523-538.

[13] S. Narayanan and S. Azarm, “On improving multiobjective
genetic algorithms for design optimization”, Structural
Optimization, Volume 18, Issues 2-3, 1999, pp 146-155.

ANNALS OF THE ORADEA UNIVERSITY
Fascicle of Management and Technological Engineering

ISSUE #1,MAY 2013, http://www.imtuoradea.ro/auo.fmte/

52

