
 

 

 
Abstract—Product and process optimization is a special 

field of interest in modern engineering. A particularly 
interesting subject, with great implications on the time and cost 
of the design and manufacturing of products is the structural 
design optimization. Traditionally employed by mathematical 
optimization procedures, modern approaches propose daring 
and original techniques based on natural processes and 
phenomena. The current paper presents the types of 
optimization usually employed in structural problems and an 
overview of the evolutionary computing paradigm, with its two 
main branches: evolutionary algorithms and swarm intelligence. 
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I. INTRODUCTION 
ROCESSES and products optimization has always been 
a main concern for engineers. Looking for better 

behaving, easier to obtain and cheaper products is an 
intrinsic aim of engineering. Structural optimization 
focuses on finding the best shape and size of the elements 
being designed in terms of material quantity, compliance, 
ease of manufacturing and possibly other objectives. 

In structural optimization, there are three different 
approaches depending on the chosen parameters to be 
optimized: optimizing the topology, shape or size of 
elements. Not in all cases a clear distinction between the 
three can be made and their exact definition (which 
parameter belongs to which kind of optimization) is 

dependent on the problem to be solved, being different 
for skeletal structures (trusses and frames) and for 
continuum ones (plane and volumetric elements).  
Fig. 1 presents visually the possibilities of optimization 
for a cantilever beam, considered here a plane continuous 
element, loaded at the free end with a load perpendicular 
to the beam axis. The original cantilever design space to 
be optimized is presented in Fig.1a. The optimization 
alternatives are:  
1) Topology optimization (Fig.1b) – find the approximate 
initial layout for material distribution inside the design 
space;  
2) Shape optimization (Fig.1c) – find the best shape by 
changing the control points of the parameterized contour; 
3) Size optimization (Fig.1d) – describe the layout in 
terms of a number of parameters and find the best set of 
values for these parameters. 

In the traditional approach, the optimization is carried 
out for a single type at once, keeping all the other 
parameters fixed. Topology is used to find an initial 
rough layout of the best solution inside the design space 
while shape and size optimization are carried out in a 
subsequent step to fine tune the model. However, for 
better results and a seamless optimization procedure there 
are several attempts at performing the optimization in and 
integrated manner, mixing in the same problem 
formulation topology, shape and size parameters and 
doing all the optimizations simultaneously [1] - [3]. 

From a historical point of view, the first optimization 
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Fig.1. Structural optimization possibilities for a cantilever beam 
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methods were the analytical, mathematical programming 
ones. For the general case of nonlinear objective 
functions or constraints, most of the methods are 
gradient-based, implementing a variation of the Newton 
algorithm, requiring continuous, differentiable functions 
of real parameters. 

Relatively more recent, to overcome the obvious 
problems classical methods were facing especially for 
computationally complex problems, a new family of 
optimization techniques was born: metaheuristic methods 
(from the Greek words “meta” – here meaning “extra” or 

“higher level” - and “heuriskein” – meaning “to find” – 
for a combined definition of “higher level optimum 

finding methods”). Metaheuristic methods generally use 

stochastic optimization, generating random solutions in 
the design space and trying to iteratively improve them 
with respect to the fitness function. As opposed to the 
gradient-based methods, metaheuristic methods: 
1) Usually make no assumptions about the optimization 
problem, making the formulation easier and more 
general;  
2) Can escape local solutions, being able to make jumps 
in the search space and find better solutions in other 
areas; 
3) Need no information about the derivative of the 
function; 
4) Can optimize discrete or noisy functions, not requiring 
them to be continuous or differentiable; 
5) Scale well with the increase of dimensions; classical 
problems suffer from the “dimensional hell”, being 

extremely difficult to be applied to structural 
optimization, typically a problem with a large number of 
parameters, thus dimensions; 
6) Can handle very large and complex design spaces. 

On the other hand, the major disadvantage of 
metaheuristics is that they don’t guarantee a solution is 

ever found and have no knowledge of if and when the 
global solution is obtained. The iterative process is 
terminated after a fixed set of steps or after a solution is 
found within a prescribed range. At the same time, due to 
their stochastic nature, it’s probable that different runs of 

the algorithms will result in different solutions. However, 
practice has shown metaheuristic methods work well for 
most optimization problems and do find optimal solutions 
regardless. 

Metaheuristic algorithms can be divided in two major 
families: local search and evolutionary computing. While 
evolutionary computing will be detailed in the following 
paragraphs, local search moves iteratively towards the 
optimum by applying local changes to a randomly 
generated initial solution. Most prominent local search 
methods are hill-climbing and simulated annealing. 
Simulated annealing in particular is pretty cheap in terms 
of calculation cost and can also be used to search for 
global optima but its behaviour in performing structural 
optimization has been shown to be less effective than in 
the case of other metaheuristic methods [4]. More, its 

efficiency is heavily dependent on parameters choice, 
which in turn is problem specific and requires knowledge 
about the actual problem being solved. Setting the right 
values for the parameters becomes increasingly difficult 
with the dimensions, i.e. the number of problem 
parameters. 

II.  EVOLUTIONARY COMPUTING OVERVIEW 
Evolutionary computing refers to what is probably the 

most exotic group of optimization methods, methods 
generally inspired from natural phenomena or behaviors. 
They are said to be population-based techniques as they 
work simultaneously with an entire group of solutions 
(called a population) and evolve them iteratively towards 
the optimum. 

As part of the metaheuristic family of optimization 
techniques, evolutionary computing methods implement 
algorithms independent of the actual problem being 
solved. However, knowledge about the problem can be 
leveraged by adapting the general optimization 
techniques to incorporate certain specific details. 
Properly handled, these adjustments can lead to 
significant increases in algorithm efficiency, both in 
terms of solution quality and computational effort and 
time. As a result, problem specific variations of the 
general optimization methods are worth pursuing in 
scientific research. 

To emphasize this idea even more, it has been shown 
that the performance of all optimization methods is 
almost the same if averaged over all optimization 
problems. This principle has been formalized under the 
name of “no free lunch theorem” [5]. To put the theorem 
in other words, if a certain technique shows very good 
performance for a certain type of optimization problem, it 
will probably have a less than average performance on 
other problems. It is thus important to study for each type 
of optimization problem which algorithms are more 
suitable and which are not. 

 There are two major subfields under the evolutionary 
computation umbrella: 
1) Evolutionary Algorithms (Examples: Genetic 
Algorithm, Genetic Programming, Memetic Algorithm, 
Evolutionary Programming, Evolutionary Strategy); 
2) Swarm Intelligence (Examples: Particle Swarm 
Optimization, Ant Colony Optimization, Artificial 
Immune System). 

Evolutionary Algorithms (EA) are inspired by the 
evolution mechanism of species. It tries to evolve a 
population of individuals, each a possible solution to the 
optimization problem, across multiple generations 
towards the optimal solution, imitating natural evolution 
concepts such as genes, fitness, selection, reproduction 
and mutation. 

Swarm Intelligence (SI) mimics the collective 
behaviour of large organized systems, usually inspired 
from nature: flying of bird stocks, fish schooling, ants 
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search for food, raindrops falling, mass systems 
interaction, etc. As in the case of EAs, each individual in 
the population represents a feasible solution to the 
problem. Individuals are not moving in the search space 
(design space) in an intelligent way, but following simple 
principles involving local and global information. 
However, the sum of interactions between them and their 
environment gives the group as a whole intelligent 
behavior. The movement of the population is expected to 
be towards the optimum position in space (optimal 
solution). 

The most well documented algorithms are: 
1) Genetic Algorithm – the most representative 
Evolutionary Algorithm, first proposed in 1975 [6]; 
2) Particle Swarm Optimization - the most representative 
Swarm Intelligence method, first proposed in 1995 [7]. 

Not only are these algorithms the most representative 
for their family, but as shown in [8] they have been 
proven to be the most effective for structural design 
optimization on several benchmark problems. Some 
works compare the two methods as implemented in 
different optimization problems [4] while others suggest 
incorporating concepts from one technique into the other 
can lead to very good results. 

In both EA and SI, the value of each individual is 
evaluated using a fitness function, the actual function to 
be optimized. To move the population in the direction of 
better fitness values and thus search for the optimum the 
algorithms are biased towards fitter individuals. In order 
to apply evolutionary computing optimization one needs 
procedures to encode and decode the problem and to 
evaluate the fitness of the encoded solutions. These are 
the only problem specific aspects of the methods, the ins 
and outs of otherwise true black-box optimization 
algorithms. Encoded individuals are usually represented 
as arrays of parameters values. Constraints can also be 
modeled, either as limits for the parameters or they can 
be evaluated from the encoded solution. In the latter case, 
to assure individuals not satisfying a certain constraint 
have less chance of influencing the general fitness of the 
group they have their fitness value penalized with an 
amount proportional to the incompliance of the 
individual. Typical constraints for structural design 
optimization are stress, displacement or vibration modes. 

The optimization problem can be formalized as: 
),:)(( nXXxf Min/Max    (1) 

In the above, f is the objective function and x is an n-
dimensional vector containing the design parameters, 
belonging to the solution space X. The objective function 
in structural design is usually the total mass of the model, 
expressed in terms of design parameters. The model is 
subjected to constraints of stress and/or displacement. To 
evaluate all these Finite Element Analysis (FEA) is used 
and each simulation is costly in terms of computational 
time and effort. Population-based optimization 
techniques require a very large number of fitness 

evaluations (hundreds or even thousands), equal to the 
number of individuals multiplied by the number of 
iterations. To reduce the number of evaluations, a 
technique called fitness approximation [9] - [11] can be 
employed, leading to huge gains in algorithm running 
time. Fitness approximation implies building an 
approximate, easier to use model (also called meta-
model) for the fitness function and apply it as a surrogate 
for the real evaluation. The approximate models use 
sampled data (for which an exact evaluation is needed) 
from the solution space and use them to find the function 
values for the other points. They can use polynomial 
interpolation, regression models, neural networks and 
other approximation techniques. To overcome the 
problems that can occur when using exclusively the 
approximate model, such as converging to local optima, 
it is advisable to use a compromise and evaluate some of 
the solutions with the approximate model and some of 
them with the exact method. 

One of the best methods for structural optimization 
fitness approximation, a problem with an n-dimensional, 
discrete design space is the Adaptive Fuzzy Fitness 
Granulation [12]. The technique uses an adaptive group 
of solutions called granules, which have their fitness 
value calculated using exact evaluation. If a new solution 
is similar enough to one of these solutions, its fitness is 
not calculated but inherits the fitness value of the fuzzy 
granule it resembles. If not, the new solution is evaluated 
using the exact method and added to the group of 
granules. The adaptive nature of the method comes from 
the fact that the group of solutions is dynamic, receiving 
new solutions which are not similar to any in the group 
and dropping solutions for which no similarity is found 
for a while, but also from the fact that the granules radius 
of influence is adapted as needed during the run of the 
algorithm to allow for exploitation of good solutions. 

III. MULTIOBJECTIVE OPTIMIZATION IN EVOLUTIONARY 
COMPUTING 

Structural optimization is often times carried out with 
respect to more than one objective function. This is 
called Multi-objective Optimization (MO). The process 
can involve the optimization of mass, compliance, 
manufacturability and others, under the constraints of 
stress, displacement or vibration modes. The constraints 
can also be modeled as objective functions, leaving the 
designer the decision of choosing for example a lighter 
model with bigger maximum stress or a heavier model 
with a bigger safety factor. The formalization of the MO 
is similar to single-objective optimization, but instead of 
the single function f, we minimize or maximize a vector 
of m objective functions F(x): 

),:)(( nm XXxf Min/Max   (2) 
One possible approach to solve MO is to define a 

super fitness function which averages the values of the 
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individual fitness functions, each weighted with its 
relative importance in the overall fitness. This super 
value is then used as the single measure of solution 
quality. One of the biggest problems with this method is 
that it’s extremely difficult to find the right set of 
weighting values that can correctly reflect the total 
quality of a solution. More, it hides possible feasible 
solutions from the designer, making decisions instead of 
them based on rather arbitrary criteria. 

To overcome these limitations, the concept of Pareto 
efficiency can be used. A solution is considered Pareto 
efficient or Pareto optimal if it’s not strictly dominated by 

any other known solution. A solution strictly dominates 
another if for all fitness functions it evaluates to a better 
or at least equal value. Fig. 2 exemplifies a minimization 
problem with respect to two fitness functions f1 and f2. 
Solution A strictly dominates solution B, as it has a 
smaller value for both functions. On the same graph, the 
Pareto limit (or frontier) can be observed. This is the 
group of solutions which are Pareto efficient, not strictly 
dominated by any other solution in the population. 

f1(x)

f2(x)
Pareto limit

Pareto inefficient solution

Pareto efficient solution

f1(A)

B

A

f1(B)

f2(A)

f2(B)

 
Fig.2. Pareto Efficiency for 2 objective functions 

 
Multi-objective optimization genetic algorithm 

(MOGA) is the multi-objective variant of the genetic 
algorithm. The algorithm is more complicated than the 
standard single-objective one, one the biggest difficulties 
being setting the stopping criteria correctly. To overcome 
these issues, improvements to the standard MOGA have 
been proposed in several papers, including [13]. 

IV. CONCLUSIONS AND FURTHER RESEARCH 
As shown by the increasing number of researchers 

involved in this field and the huge effort invested in 
refining existing and developing new methods, 
metaheuristic optimization has become a central part in 
engineering optimization. The clear advantages 

highlighted in this paper when compared to analytical 
methods recommend metaheuristics and evolutionary 
computing in particular as the preferred way of 
performing structural optimization. 

Evolutionary computing works with populations of 
solutions in an iterative way, trying to evolve the 
individuals, each a candidate solution, towards the local 
and global minima of the objective function. The two 
most representative algorithms are evolutionary 
algorithms and particle swarm optimization. These two 
methods are the most studied and well-developed of all 
evolutionary computing algorithms. Although there is no 
method that can perform at maximum efficiency for all 
optimization problems, many papers show that the two 
mentioned here are generally the most effective for 
structural optimization. As a continuation of this study, 
we will detail in a future paper the inner workings and 
optimization possibilities offered by the genetic 
algorithms and particle swarm optimization. 
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