
 

 

 

Abstract—Hopf invariant is introduced in order to evidence 

the existence of an endless set of classes of copying three-

dimensional sphere in two-dimensional sphere. Later, Hopf  has 

defined this invariant in order to copying (2k+1)-dimensional 

sphere in (k+1)-dimensional sphere. 
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I. INTRODUCTION 

AUSDORFF space and Hopf invariant have a 

significant place and role in the theory of homotopy 

and wider in topology. Hopf invariant is an invariant of 

homotopic class of mapping topological spaces. It was 

defined by Hopf for mapping the sphere f:S
2n-1

 → S
n
. 

Let’s say that  f: S
2n-1

 → S
n
 is continuous mapping.  

When transferring on homotopic mapping, we can 

consider that mapping to be simplified in relation to some 

triangulations of the spheres S
n 

and S
2n-1

. Then, Hopf 

invariant is defined as hanging coefficient of (n-1)-

dimensional submultiplicities that intersect–f
-1

(a) and f
-

1
(b) in S

2n-1 
for each different a, b ∈ S

n
. 

Definition of hanging coefficient: Let’s say that M
k 

and 

N
l
 are two closed smooth oriented multiplicities of 

proportion k and l, and f and g are their continuous 

mappings in oriented Euclidean space E 
k+l+1

 of 

proportion k+l+1, where the sets f(M
k
) and g(N

l
) do not 

intersect. Furthermore, let’s say that S
k+l

 is a unit sphere 

of the space E
k+l+1

 with centre in an arbitrary point s O, 

taken with that orientation, which it has as a border of 

ball and M
k
×N

l
 oriented right product of multiplicity of 

M
k 

and N
l
. Each point (x,y)∈M

k
×N

l
, x∈M

k
, y∈N

l
 

corresponds to a non-zero segment (f(x), g(y)), and 

intersection of that ray with S
k+1

 we shall mark with 

X(x,y). Level of mapping X oriented multiplicity of 

M
k
×N

l
 in oriented sphere  S

k+1
 is called hanging 

coefficient of mapped multiplicities (f,M
k
) and (g,N

l
) and 

it is marked with b((f,M
k
), (g,N

l
)). Obviously, if 

mappings f and g change constantly: f=ft, g=gt – in a way 

that sets ft(M
k
) and gt(N

l
) do not intersect in any t, then 

mapping X=Xt is also changed constantly and, for that 

reason, hanging coefficient is not changed. Frequently, 

when multiplicities occur as submultiplicities of the space 

E
k+l+1 

and mappings f and g are identical, hanging 

coefficient is also determined and in that case it is 

marked with b(M
k
, N

l
). Actually  

b((g, N
l
), (f,M

k
))= (-1)

(k+1) (l+1) 
b((f, M

k
), (g, N

l
))         (1) 

This formula can be proven in the following manner: 

Let’s say that χ ' is the mapping of multiplicities N
l
×M

k
 

into S
k+l

, analogous to previously derived mapping of χ. 

With the symbol λ, we shall mark the mapping of 

multiplicity N
l
×M

k
 into multiplicity M

k
×N

l
, which 

translates the point (y, x) into the point (x, y) and let’s say 

that μ is mapping of the sphere S
k+l

 to itself, which 

translates each its point into a diametrically opposite. It is 

obvious that the level of mapping λ equals (-1)
k+l

, and 

level of mapping  μ equals (-1)
k+l+1

. It can easily be seen 

that χ '= μ χ λ. From this, the accuracy of above formula 

follows (1). 

Now, let’s say that instead of one mapped multiplicity (g, 

N
l
), there are two multiplicities (g0, N0

l
) and (g1, N1

l
). 

Let’s say that oriented limited component of multiplicity 

is still N
l+1

, whose oriented limit consists of multiplicities 

N0
l
and –N1

l
, and there is mapping of g multiplicities of  

N
l+1

 in space E
k+l+1

, which overlaps with g0 on N0
1
 and 

with g1 on N1
l
 where sets f (M

k
) and g(N

l+1
) do not 

mutually intersect. Actually  

b((f, M
k
), (g0, N0

l
))= b((f, M

k
), (g1, N1

l
))                     (2) 

Let’s prove it. As a limit of multiplicity M
k
×N

l+1
 we use 

multiplicities M
k
×N0

l
- M

k
×N1

l
. Each point (x,y)  

M
k
×N

l+1
 corresponds with a segment (f(x), g(y)). Let’s 

install a ray from point O, parallel with segment (f(x), 

g(y)) and mark its intersection with the sphere S
k+1

 as 

χ(x,y). Thus, we obtain continuous mapping χ of 

multiplicities M
k
×N

l+1
 into the sphere S

k+1
 and, for that 

reason, the level of mapping of χ at its border equals 

zero. From this, the accuracy of formula (2) directly 

follows.  

Mapping f:S
2n-1

→S
n
 is determined by the element 

∈π2n-1(S
n
) and the image of the element  in case of 

homeomorphism π2n-1(s
n
)=π2n-2(S

n
) H2n-2(ΩS

n
)=Z 

matches Hopf invariant H(f) (h is homeomorphism here). 

Let’s now take that f: S
2n-1

→S
n
 is mapping of the class S

2
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and form Ω∈λ
n
 S

n
 represents a group of integer 

homologies H
n
(S

n
,Z). As such a form, we can take, for 

example, form Ω=  where dV is the element of 

scope on S
n
 in some matrix and vol(S

n
) is the scope of 

sphere S
n
. Then the form f

x
(Ω)∈ λ

n 
S

2n-1 
is closed and due 

to triviality of the group H
n
, H

n
(S

2n-1
,Z) it appears as a 

point. Therefore, f
x
(Ω)=dθ for some forms θ∈ λ

n-1
S

2n-1
. 

There is a formula for calculation of Hopf invariant.  

H(f)= . 

II. PONTRYAGIN’S INTERPRETATION OF HOPF INVARIANT 

Definition: Let’s say that f is smooth mapping of 

oriented sphere  of the proportion 2k+1 into 

oriented sphere S
k+1

 of the proportion k+1, k≥1. Further, 

let’s say that p’ and q’ are north and south poles of the 

sphere ; E
2k+1

 is tangent line on the sphere  

in the point p’ and φ central projection of sets ∖q’ 

on the space E
2k+1

. In the sphere S
k+1

 we shall select two 

different among each other and from f(q’) regular points 

A0 and A1 of the mapping f; then            =f
-1

(a0) and 

= f
-1

(a1) are closed oriented submultiplicities of 

Euclidean space E
2k+1

. Let’s say that 

γ(f)=γ(f,p’,a0,a1)=b( , ). Actually, γ(f) is a 

homotopic invariant of the mapping f that does not 

depend on random selection of points p’, a0, a1 and that 

for numerical k that invariant is always equal to zero.   

We can show the invariance of the number γ(f). 

 Let’s say that f0 and f1 are two smooth homotoph 

mappings of the sphere  in S
k+1

 and ft smooth 

deformation that connects them. Deformation ft coincides 

with mapping of fx product of ×I into S
k+1

. We can 

observe that with sufficiently small movement of points 

a0 and a1 the number γ(ft), t=0,1 is not changed since 

multiplicities φ (ai) suffer only s small deformation. 

For that reason, we can observe that the curve ft(q’), 

0≤t≤1, does not go through the points ao and a1. Let’s say 

that r is so big natural number that for <   the sets  

(a0) and (a1) do not mutually intersect. Now, let’s 

move away from the points a0 and a1 so that they become 

proper mapping points fx and ft; t=0, , … , , 1. 

Let’s now prove that γ(f1)= γ(f0).  

Part of the segment I that consists of the points, which 

satisfy the condition ≤t≤  , we will mark with Is, and 

let’s say that  is the original of the point ai in the 

lane M
k
×Is in case of mapping of the fx. Due to conditions 

set for points a0<a1, the set  is oriented 

submultiplicity of multiplicity ×Is, whose border is 

multiplicity (ai)+ (ai). Projection of multiplicity 

×I  along the axis I onto the sphere  we will 

mark with π. Mapping of φπ of multiplicity  is 

determined by mapping the multiplicity (φπ, ) with 

a border φ (ai)+φ (ai). Since the sets φπ( ) and 

φπ( ) do not mutually intersect, it follows that 

γ( )=γ( ), and for that reason γ(f1)= γ(f0). 

Now, let’s prove that γ(f, p’, a0, a1) does not depend on 

the selection of points  a0 and a1. Let’s say that instead of 

the points a0 and a1, the points b0 and b1 were selected. 

Obviously, there is a smooth homeomorphism  of the 

sphere S
k+1

 to itself, homotopic to identical, where  

λ(ai)=bi, i=0,1. It is obvious that γ(λf, p’, b0, b1)= γ(f, p’, 

a0, a1), and since mappings of λf and f are homotopic 

among themselves, we obtain γ(f, p’, b0, b1)= γ(f, p’, a0, 

a1). 

Analogous, it is proved that γ(f, p’, a0, a1) does not 

depend on the selection of the point p’, since there is a 

rotation of the sphere , which translates the point 

p’ into another arbitrary point of the sphere . 

In the end, let’s show that, due to even k the invariant 

γ(f) is transformed to 0. Since the number γ(f) does not 

depend on the selection of points p0 and f1, then we can 

change their roles and then we have b( , )=b( , 

,) .  Since   b( , ,)=(-1)  b( , ), then in 

case of even k, we have b( , =0. 

 

III. HOPF INVARIANT OF EQUIPPED MULTIPLICITY  

 

If homotopic classes of the mapping of (2k+1)-

dimensional sphere into (k+1)-dimensional sphere are in 

mutually unambiguous correspondence with homologous 

classes of equipped k-dimensional multiplicities of 

(2k+1)-dimensional space, then invariant γ(f) can be 

expressed as invariant of homological class of equipped 

k-dimensional multiplicities in (2k+1)-dimensional space. 

Now, let’s explain the invariant γ(f). 

1) Let’s say that (M
k
, U), 

U(x)= , is equipped 

submultiplicity of oriented Euclidean space E
2k+1

 

and  is normal to multiplicity on M
k
 in the point 

x∈M
k
. That normal will be observed as vector 

space with the beginning in point x so that U(x) is 

the base of the space Nx. Let’s arbitrary select a 

vector c=  of some coordinate 

Euclidean space N and let’s say that point x∈M
k
 

corresponds with the point 

c(x)=c
1
U1(x)+…+c

k+1
Uk+1(x) of the space Nx. In 

case of sufficiently small vector c, the mapping of 

C is homeomorphous mapping of multiplicity M
k
 

into the space E
2k+1

. It is obvious that if  c≠0  

multiplicities M
k
 and c(M

k
) do not intersect among 

themselves and that for two different non-zero 

vectors c and c’ multiplicities c(M
k
) and c’(M

k
) are 

homotopic among themselves in the space 

E
2k+1∖M

k
. According to this, for a sufficiently 

small, different than zero, vector c, hanging 

coefficient b(M
k
, c(M

k
))  does not depend on vector 

c and we shall put  

γ(M
k
,U)=b(M

k
, c(M

k
)). 
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Actually, if f→(M
k
, U) then γ(f)=γ(M

k
,U). 

Since γ(f) is a homotopic invariant of the mapping 

f, then γ(M
k
,U) is homotopic invariant of equipped 

multiplicity (M
k
,U).  

Formula γ(f)=γ(M
k
,U) can be proven in the 

following way. Let’s say that f is smooth mapping 

of the sphere  into the sphere S
k+1

 and p∈S
k+1

 

is the proper point of mapping the f, different than 

f(q’). Then, for the construction of equipped 

multiplicity (M
k
,U), which corresponds to the 

mapping of f, the point p can be taken as north pole 

of the sphere S
2k+1

. Let’s say that e1, … , ek+1 is 

some orthogonal base of tangent plane in the point 

p onto the sphere S
k+1

 and x
1
, … , x

k+1
 of the 

appropriate coordinate of that base in the area 

S
k+1∖-q. For the construction of invariant  γ(f) we 

take the point a0 pol p, and for the point a1 point 

with coordinates x
1
=c

1
, … , x

k+1
=c

k+1
. In such 

selection of points a0 and a1 multiplicity  

obviously corresponds with multiplicity M
k
, and 

multiplicity  is placed from multiplicity c(M
k
) 

depending on the size of vector c. For that reason, 

b(M
k
, C(M

k
))= b( ,  and relation 

γ(f)=γ(M
k
,U) is proven.  

2) Let’s say that is a homologous group of 

equipped k-dimensional multiplicities of 

Euclidean oriented space E
2k+1

. Each element of 

π∈ corresponds with integer γ(π)=γ(M
k
,U) 

where (M
k
,U) is equipped multiplicity of the 

class π. The number γ(π) depends only on the 

element π and it does not depend on random 

choice of equipped multiplicity (M
k
,U). 

Actually, γ is homomorphous mapping of the 

group in additive group of integers. From 

this, it follows that a set of all elements of 

, for which γ(π)=0, is a subset of 

. 

It can proven in the following manner: Let’s say 

that π1 and π2 are two elements of the group , 

and ( ,U1) and ( ,U2) are equipped 

multiplicities that correspond to classes π1 and π2 

and which lie on different sides from some 

hyperplane  E
2k

 of the space E
2k+1

. Further, let’s say 

that S
2k

 is the unit sphere of the space E
2k+1

 with a 

centre O, which belongs to E
2k

. Let’s arbitrarily 

select a small vector c that determines the 

replacement of multiplicity . We have  

γ(π1 + π2)=b( , c( )). 

Hanging coefficient, which is found on the right 

side, is defined as a level of mapping X of the 

multiplicity ( )×c( ) onto the 

sphere S
2k

. Level of mapping of X will be 

determined in the point p of the sphere S
2k

, which 

lies close to the hyperplane E
2k

. Owing to such 

selection of the point p segment (x, C(y)), where 

x∈ , y∈ ,  cannot be parallel with the segment 

(0,p). From this it follows that  

b( , c( ))= b(  ,c( ))+ 

b( , c( )), 

i.e. further  

γ(π1 + π2)= γ(π1)+ γ(π2). 

According to this, the attitude is proved.  

3) Let’s say that f is smooth mapping of oriented 

sphere  onto the oriented sphere S
2k+1

, g 

mapping of the sphere  to itself with the 

degree  σ, and h mapping of the sphere S
2k+1

 to 

itself  with the degree τ. We will put that f’=h f g. It 

appears that  

γ(f’)= σ τ
2
γ(f). 

This attitude is enough to prove for the case when h 

is identical mapping and for the case when g is 

identical mapping. We must consider the case when 

g is identical mapping, i.e. when f’=hf. Let’s say 

that a0 and a1 are two different than f’(q’), points of 

the sphere S
k+1

, which appear as proper points of 

mapping h and hf. Then h
-1

(at)= ; 

t=0,1, where mapping of f is proper in any of the 

points , t=0,1, i=1,2, … , rt. The sign of 

functional determinant of mapping of h in the point 

 we shall mark with , i=1,2, … , rt, t=0,1. 

Tangent in the north pole p’ of the sphere  

we will mark with E
2k+1

, and central mapping of the 

set  ∖q’ on it from the point q’ from φ. Let’s 

put that φf’
-1

(at)= , t=0,1; φf
-1

( )= . It is easy 

to observe that  

= ∪ ∪ … ∪   

where the signs  depend on orientation of the 

original. Since  and  are two different points 

of the sphere S
k+1

, which appear as proper points of 

mapping f, then invariant  (f) can be defined as 

b( , ). From this it follows that  

γ(f)=b( ∪ … ∪ ∪ ∪ … 

∪ )= 

 
Thus, this attitude is proved.  

IV. CONCLUSION 

Hopf invariant has an important role in homotopic 
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classification of mapping of sphere into sphere and it was 

initially introduced in order to prove the existence of 

uncountable set of classes of mapping the three-

dimensional sphere to two-dimensional, and then for the 

sake of mapping (2k+1)-dimensional sphere into (k+1)-

dimensional. Hopf invariant is defined and, in the end, 

described with the help of equipped multiplicity that 

corresponds with mapping.  
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