
 

 

 

Abstract—This paper represents a case study regarding the 

structural optimization of a typical gear bracket used in 

automobiles. The functional specifications mimic those found 

in real gear brackets, both in terms of geometry and boundary 

conditions, including the loading, thus a direct comparison with 

such existing brackets can be made. The optimization 

procedure uses an original implementation of genetic 

algorithms, as found in the Object Oriented Genetic Algorithm 

framework for MATLAB. For the evaluation of solutions, the 

FEA software Abaqus was used, in conjunction with the 

scripting language Python. The results show the methodology 

can lead to lighter parts, while keeping the same strength and 

rigidity requirements. It also allows the automation of a task 

that would otherwise require important design efforts, without 

guaranteeing the same quality of solutions. 

 

Keywords—shape optimization, gear bracket, genetic 

algorithm, Abaqus, MATLAB 

I. INTRODUCTION 

HAPE and size optimization  is usually carried out as 

the last step in structural optimization, dealing with 

fine-tuning geometries for which a general topology has 

already been established. In finding a final design for a 

given problem, topology optimization has an impact of 

up to 70% [1], thus being the main structural 

optimization drive force. However, results given by 

topology optimization usually need to be interpreted, 

requiring further processing, with notable but still 

insufficiently developed exceptions [2], while those 

given by shape and size optimization are most of the 

times final CAD designs [1]. More, as shown in [3], most 

topology optimization algorithms, including the most 

popular one in the industry: Solid Isotropic Material with 

Penalization (SIMP) [4], lead to globally feasible 

designs, but which violate the stress requirements at 

certain points where important stress concentrations 

appear. That is to be expected, as these methods optimize 

the total strain energy under a fixed volume fraction, 

which is a measure of rigidity rather than stress. In these 

conditions, the step of shape and size optimization is 

absolutely necessary as the final procedure in functional 

geometry optimization, in order to achieve truly 

optimized and feasible solutions. While this can be 

achieved both by manual iterations [2] or by any other 

optimization techniques, genetic algorithms (GA) have 

been proven to be  a very effective shape optimization 

method [5-10]. There are numerous GA tools available 

for all programming languages and platforms. The 

problem of shape and size optimization implies using 

such a tool in conjunction with a FEA software for the 

evaluation and comparison of optimality of proposed 

solutions [8], [9], [11]. 

This research uses the original Object Oriented Genetic 

Algorithm (OOGA) for running the GA, an object-

oriented programming (OOP) platform proposed by the 

author for the implementation of GA in MATLAB [9]. 

The platform allows for the rapid and powerful set up of 

common GAs, offers many options to configure and 

customize their behaviour and allows for a seamless 

integration with the corresponding FEA software. 

For the FEA evaluation of the objective functions, two 

common approaches are: 

1) using the APDL parametric language of ANSYS [8]; 

2) using the Simulia Abaqus FEA software in relation 

with the Python scripting language for the variation and 

simulation the modeled parametric solutions [9], [11]. 

In this paper we chose the second approach, considering 

both the ease of use and effectiveness of Python scripts 

and the advanced modeling and simulation capabilities of 

Abaqus. 

II. PROBLEM FORMULATION AND SET UP 

The structure chosen for this study is a typical bracket 

used to support the gear box of auto vehicles. The 

technical specifications impose 3 supports and 1 

connection point and the proposed topology is indicated 

in Fig 1. This topology resembles the one currently used 

by the auto manufacturer but proposes slight 

modifications in the number and position of surfaces and 

ribs. The steel screws at the 3 supports have a fixed 

diameter of 10 mm and are modeled as 1D beam 

elements with the ends connected to the parts respective 
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surfaces and fixed at the bottom. The part is assumed to 

be made of the aluminum alloy ENAC-AlSi9Cu3(Fe), 

having the following material characteristics: 

1) Material density: 32.56t m  ; 

2) Young modulus: 5 20.7 10E N mm  ; 

3) Conventional yield strength: 
2

0.2 140pR N mm . 

4) Tensile strength: 2240mR N mm . 

The bracket is subjected to 2 load combinations: 

1) LoadX – The load sustained by the bracket in case of 

brake or impact. Beside the horizontal load, the 

gravitational load (supported mass) is also present. 

2) LoadZ – The vertical, gravitational load carried out by 

the bracket. 

The technical regulations require the part to be verified 

for 3 load cases: 

1) Normal – the maximum stress must not exceed half of 

the conventional yield strength ( max 0.20.5 pR   ). 

2) Incidental – the maximum allowed stress is the 

conventional yield strength ( max 0.2pR  ). 

3) Accidental – the maximum allowed stress is the tensile 

strength ( max mR  ). 

For this study we assumed the incidental load case and 

considered the conventional yield strength ( 0.2pR ) as the 

limit stress. The actual loads in the 2 load combinations 

are given in TABLE I below. 
 

TABLE I  
LOAD COMBINATIONS 

 

The topology of the part, along with the boundary 

conditions and load directions are indicated in Fig. 1. 

 

 
Fig. 1.  Model topology and boundary conditions. 

Based on the imposed topology, a set of parameters is 

attached to the geometry. We considered 17 parameters 

to describe the essential parts of the structure. These are 

generally edge lengths, arcs radii, points positions, plates 

and ribs thicknesses. The parameters, along with their 

imposed bounds (limits for their values) and the discrete 

increments in their domain, are listed in TABLE II. 
 

TABLE II  

PARAMETERS DESCRIPTION AND BOUNDS 

 

The GA routine was applied using the MATLAB 

framework developed by the author in a previous work: 

Object Oriented Genetic Algorithm (OOGA) [9]. The 

connection with the Abaqus software used to evaluate the 

candidate solutions with FEA was possible due to the 

Abaqus connection class built in OOGA and with the 

help of a Python script responsible for the model 

geometric variation, remeshing, analysis and 

postprocessing. 

The objective function of the optimization is the 

minimization of the total volume of the structure (as a 

measure of its mass), under the constraint of maximum 

allowed stress (conventional yield strength). The 

constraint was handled by the means of the penalty 

function developed in [7]. 

Because the genetic algorithms are stochastic in 

nature, the end results are unpredictable and usually 

unrepeatable. To account for this fact and verify that the 

optimum solution is really the global optimum and not 

just a local minimum, we have run the algorithm 4 times 

(called Run A through Run D), varying some of the GA 

from one run to the other, as shown in TABLE III. These 

Load Combination Fx Fz 

LoadX -8250 N -1200 N 
LoadZ 0 -6000 N 

Parameter Name 
Parameter 

Description 
Bounds Inc 

HConnPlate height of upper plate 2 - 5 0.5 
WConnPlate width of skew upper 

plate 

2.5 - 3.5 0.1 

WCenterSkewPlate width of ceneter 
skew plate 

1 – 4 0.1 

WCenterSuppPlate width of center 

support upper plate 

3 – 5 0.1 

WLRSkewPlates width of left and 

right skew plates 

1 - 4 0.1 

WLRSuppPlates width of left and 
right support upper 

plates 

12 – 16 0.1 

SkewLRDCenter center distance at 

side skew plates 

10 – 30 1 

SkewLRDSide side distance at side 
skew plates 

20 – 60 1 

SkewLRShapeF shape factor at side 

skew plates 

0 – 1 .01 

DTopBackPlate center disctance at 

back plates 

20 – 40 1 

WBackPlates width of back plates 3 – 7 0.1 
HFrontPlates height of front plates 6 – 8 0.2 

WCenterLRPlates width of center side 

plates 

1 – 4 0.1 

HTopCenterLRExtra vertical distance for 

extra ribs 

20 – 35 1 

DTopCenterLRExtra center distance for 
extra ribs 

10 – 20 1 

DInterCenterLRExtra intermediate 

distance for extra 
ribs 

10 – 30 1 

HInterCenterLRExtra intermediate height 

for extra ribs 

6 - 20 1 

Fx 

Fz 
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parameters are the total number of generations, the 

number of individuals in the population (population 

size), the mutation method and the mutation parameter 

final value. 

A comprehensive list of classic mutation operators is 

given in [12]. We chose for this study the Uniform 

mutation for Run A and Run B, and Polynomial mutation 

for Run C and Run D. The actual implementation of 

these mutation operators in OOGA, detailed in [9], is 

slightly different than their original form, in order to 

enhance their flexibility and versatility. OOGA also 

allows the variation of the parameter value over 

generations, in order to keep the exploration capability of 

mutation in earlier generations but improve its 

exploitation capabilities in later generations. 
 

TABLE III  
GA SETTINGS FOR RUNS A-D 

 

For all runs, the common GA settings used are given 

in the list below: 

1) Crossover method: 3-point (generalization of single-

point and 2-point crossover) 

2) Crossover probability: 80% of the new individuals 

undergo crossover; 

3) Elitism: 2 individuals are automatically passed to the 

new generation, ensuring the best solutions survive; 

4) Individual mutation probability: 100% (all individuals 

have a chance of mutating); 

5) Gene mutation probability: 20% of the genes of each 

individual mutate; 

6) Mutation parameter initial value: 1 (affecting the 

mutation probability; the final value for each run is given 

in TABLE III); 

7) Selection: stochastic uniform (combination between 

deterministic and stochastic); 

8) Fitness scaling: rank based (each individual receives a 

scaled fitness score indirectly proportional to the square 

root of its rank). 

III. RESULTS 

As shown in the previous section, the optimization 

procedure was run 4 times, with different settings. The 

final best solution for each case is described in TABLE 

IV. This shows the final values of the 17 parameters, the 

maximum equivalent von Mises stress, the volume of the 

part and its mass. As can be observed, all the runs lead to 

similar models, most of the parameters being the same or 

almost the same across runs and the final mass of the part 

being practically the same. At the same time, the 

maximum von Mises stress in the structure is close to the 

limit 140lim MPa  . 

 
TABLE IV  

OPTIMUM SOLUTIONS 

 

The similarity between end results shows the GA 

optimization procedure is reliable. We chose to detail the 

results only for Run C, as this gives the best end result, 

even if by a very small margin. 

In order to illustrate the general convergence of the 

solution, Fig. 2 depicts the evolution of the best 

individual’s score over the 101 generations performed in 

Run C. The evolution is typical for a GA, with a more 

pronounced convergence in the early stages, when the 

domain is thoroughly explored and a slower convergence 

towards the end, when the main interest is exploiting and 

fine tuning the best solutions. 

 

 
Fig. 2.  Evolution of best individual over generations (Run C). 

 

It is worth noting that the end mass is about 0.308 kg, 

at a volume of about 123.5 x 10
3
 mm

3
. The real gearbox 

bracket this model is based upon has a mass of a little 

above 0.5 kg, which is considerable more than the 

solution found in this research. Part of this difference can 

be explained by the slight differences in initial 

specifications and by the fact this model is only in 
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Setting Run A Run B Run C Run D 

Number of 
generations 

51 101 101 81 

Population size 42 32 40 40 

Mutation method Unif. Unif. Poly. Poly. 
Mutation parameter 

final value 
0.1 0.1 8 1 

Parameter Name 
Run 

A 

Run 

B 

Run 

C 

Run 

D 

HConnPlate 3 3 3 3 

WConnPlate 2.6 2.9 2.5 2.5 

WCenterSkewPlate 2.5 2.5 2.5 2.5 
WCenterSuppPlate 4.8 4 4 3 

WLRSkewPlates 2 2 2 2 

WLRSuppPlates 14.5 14.4 14.8 16.0 
SkewLRDCenter 25 25 25 20 

SkewLRDSide 45 45 45 44 

SkewLRShapeF 0.86 1 1 1 

DTopBackPlate 33 33 33 33 

WBackPlates 4 4 4 4 

HFrontPlates 6 6.2 6 6 
WCenterLRPlates 2 2 2 2 

HTopCenterLRExtra 25 25 26 25 

DTopCenterLRExtra 10 13 11 10 
DInterCenterLRExtra 13 11 10 10 

HInterCenterLRExtra 10 10 10 10 

MaxMises (MPa) 139.6 139.1 139.3 139.1 
Volume (103 mm3) 123.7 123.8 123.3 123.4 

Mass (kg) 0.309 0.309 0.308 0.308 
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functional stage, while the real gearbox is the final 

product, obtained after experiencing technological 

redesigns. However, these factors can’t account for the 

whole difference, the mass reduction aimed by the study 

being thus achieved. However, the exact magnitude of 

this reduction is hard to be assessed exactly in the 

absence of detailed and precise data about the real model. 

The distribution of the equivalent stresses in the 

optimum model is depicted in Fig. 3. A view from the 

bottom of the part was chosen, as that is where the 

highest stresses appear. Considering there are some areas 

with stress concentrations and some with low stress, a 

new design with a different topology could possibly offer 

opportunities for even lighter models. 

 

 
Fig. 3.  Equivalent vonMises stress distribution for the LoadZ 

load case of the optimum model (Run C). 

IV. CONCLUSIONS 

The results obtained in this research show the 

procedure of functional structural optimization using 

genetic algorithms can lead to improved designs of auto 

parts. Besides being able to output lighter structures in 

the same strength and rigidity conditions, the algorithms 

allow the automation of this process that would 

otherwise take much more time and would not guarantee 

true optimal solutions. 

Considering all the software needed to run the 

optimization technique should be part of the endowment 

of any design department, the only additions needed are 

the tools presented in [9-10]. As shown here, these can 

successfully be applied to real-world design problems in 

the automotive or any other industry. 
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