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Abstract. The graphical-analytical methods are mentioned as being straightforward and expedite. The paper 

presents a graphical-analytical method for the kinematical analysis of a mechanism with rotating cam and 

oscillating flat-face follower. The manner supposes considering the contact point as a separate element of the 

mechanism and using concurrently the replacing mechanism with lower pairs and the actual mechanism, the 

relative motions from the contact point of the cam and contact point of the follower, respectively, are 

established. The methodology is exemplified for an actual case. 

1 Introduction  

The cam mechanisms are identified taking into account 

the motion of the cam, the motion of the follower and the 

type of contact between the cam and the follower [1]. 

Considering the last criterion, the followers are of knife-

edge type, when a single contact point exists with the cam, 

and from flat-face category, when the follower is tangent 

permanently to the profile of the cam. The kinematical 

study mechanisms can be made applying graphical, 

graphical-analytical or analytical procedures. The 

graphical-analytical methodologies have as foremost 

advantages the straightforward mathematical apparatus 

and quickness of solving. The main drawback of the 

method consists in the fact that it can be applied for a 

specified position of the cam. This inconvenience can be 

eliminated by the analytical methods. The disadvantage of 

the analytical methods resides in the complex 

mathematical apparatus, [2-3].  

2 General considerations upon cam 
mechanisms 

The graphical-analytical kinematics of a cam mechanism 

requires as principle, establishing the analytical 

expressions for the velocity/acceleration of a point of the 

mechanism (for the actual case, the contact point) in two 

manners, and afterwards solving graphically these 

equations by means of the velocities and accelerations 

polygons. In the case of the mechanisms with flat face 

follower, these systems are undetermined systems (as it 

will be proved later). An artifice is presented in [4] for 

overcoming this drawback, that is using a fictive follower 

with the knife edge placed in the cam-follower contact 

point. The fictive follower creates two mechanisms, the 

first one with the cam and the second one with the 

follower. The constraint imposed to the fictive follower, 

to have the same motion in both mechanisms, conducts to 

the absolute motion of the follower and the motion from 

the higher pair. Pelecudi [5] remarks that there are several 

equivalent mechanisms for the cam mechanism and 

proposes for solving the problem the selection of a certain 

mechanism. A method for the kinematical graphical-

analytical analysis was propose and applied in a recent 

paper [6] for a mechanism with cam and curved follower 

with non-zero curvature. In the paper it is noticed that the 

method cannot be applied for mechanisms with rotating 

cam and flat face follower, Fig. 1, since the two 

mechanisms are not structurally equivalent. For this 

reason, a method for kinematical analysis of the 

mechanism with flat face follower is presented next with 

emphasis upon the causes impeding the direct establishing 

of the motion of the follower and of the relative cam-

follower motion.   

 

Fig. 1. Mechanism with rotating cam and oscillating flat 

face follower 

 

To this end, the mechanisms with oscillating flat-face 

follower from Fig. 2 is considered, where the cam is made 

from a disc with R  radius mounted eccentrically at 

distance   with respect to the centre. The equivalent 

mechanism with plane pairs is also shown in Fig. 2. The 

vector contour from Fig. 3 is considered and the vector 

equation of closed vector contour is:  
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Fig. 2. Circular eccentric with oscillating flat-face follower 

 

 

Fig. 3. The equivalent mechanism of the cam mechanism 

 

and has the equations of projections: 
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with  ,   and   as  unknowns. Adding the equation:             
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the system becomes compatible and has the solutions: 
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In Fig. 4 there are presented the cam and the follower 

occupying the two positions and afterwards, using the 

relations: 
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the two trajectories of the contact points from the two 

mechanisms were traces. There were also represented two 

knife-edge followers having the same joint D  with the 

ground having the knife-edges in the two contact points. 

From this representation one can notice the essential 

difference between the two mechanisms. While for the 

knife-edge follower the contact point is immobile on the 

follower, the distance   being constant, and the absolute 

trajectory is represented by the circles 2,1  with the 

centers in the joint D , for the case of the mechanisms 

with plat-face follower, the contact point is mobile both 

on the cam and on the follower. As well, the trajectories 

of the contact points are two unknown curves and 

therefore, for a given position of the cam, the directions 

of the absolute velocities 
12Cv  of the contact points are 

not known, compared to the case of the knife-edge 

follower, when the velocity of the contact point is always 

normal to the direction of the follower.  

 

Fig. 4. The cam and the follower occupying the two positions 

corresponding to the solutions 

 

From here it results the conclusion that three unknowns 

occur in the system of plan vector equations that expresses 

the absolute velocity of the contact point: the absolute 

motion of the follower and the relative motions of the 

contact point with respect to the cam and to the follower.  

3 The kinematical graphical-analytical 
analysis of the mechanism 

The motion of a point 2B  on a mobile plane curve is 

considered and it is assumed that at the moment of the 

analysis the point 2B  overlies on the 1B  point placed on 

the curve. The following relations are valid between the 

velocities of the two points:  
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and between the accelerations: 
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The corresponding equation in the polygon of velocities: 
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and in the polygon of accelerations, respectively: 
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In the above relations, nn  and tt  are the notations for the 

directions parallel to the normal and tangent in the contact 

point, respectively. 
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Fig. 5. The actual mechanism and the replacing mechanism 

 

The normal transport acceleration tn
BB 12

a  is defined by the 

relation:  
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where   is the curvature radius and  n  is the versor of 

the normal. The relative Coriolis acceleration is: 
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where 1  is the angular velocity of the plane containing 

the curve. The relative acceleration is r
BB 12

a , directed 

about the tangent in the contact point. Both the actual 

mechanism and the replacing mechanism are presented in 

Fig. 5. The element 3  replaces the higher pair and has at 

the ends a rotation joint placed in the centre of curvature 

of the cam and a prismatic joint in the contact point. In the 

centre of curvature of the cam and in the contact point 

there are the points 321 C,C,C  and 21 B,B , 3B  placed on 

the cam, on the follower and on the replacing element, 

respectively. Applying the relation 5 it is obtained, for the 

points 3B and 1B :   
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and for the points 3B  and 2B , respectively: 
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Concerning the velocities, the directions of the relative 

velocities 
13 BBv ,

23 BBv  are unknown but this can be 

overcome by subtracting the equations 12, member by 

member and writing the results under the form: 

1212 BBBB vvv   
 

(14) 

In the equation obtained above, 
1Bv  is completely known 

and the other two vectors have known directions, 

DB
2B v  and )BD(tt||

12 BBv ; therefore the equation 

allows for finding the velocity of the point 2B  and 

implicitly the angular velocity of the follower and the 

relative velocity from the higher pair. The challenge of 

applying the same methodology for the analysis of the 

accelerations reaches the barrier that there are necessary 

the relative velocities of the contact point with respect to 

the cam and to the follower; these velocities must be 

known for finding the magnitudes of the accelerations 
c

BB
tn

BB 1313
,aa  and 

3 1

c
B Ba ; the acceleration tn

BB 23
a  is zero 

since the curvature radius of the follower is 2 .  To 

surmount this difficulty it is recalled that due to the 

prismatic joint from point B  the next equality is always 

valid:    
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In the velocity polygon, the relation 15 is written as: 

3232 ccbb   

 

(16) 

Moreover, it is taken into consideration that due to the 

revolution joint from C , 
31 CC vv   and the points 1c  

and 3c  are always overlapped in the velocity polygon. 

The position of the point 1c  is found by applying the 

theorem of similar triangles between the known ABC  and 

11cab . Now, the point 2c  can be found by translation of 

the point 3c  with the vector 3 2b b . For establishing the 

accelerations distribution, the equation 4 is applied twice, 

for the points 3B  and 1B , and for 3B  and 2B  

respectively:    
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The right members of the equations 17 are equalled and 

introducing the notations: 
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it results the following relation: 
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formally rewritten as: 
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The above equation is formally identical to the equation 

of accelerations corresponding to the knife-edge follower 

with the remark that 
c

1B2B
a , 

n

1B2B
a  are just notations and 

have different relations compared to the ones known for 

the two terms. The consequent equation from the polygon 

of accelerations is:   
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The solving of the equation in the accelerations’ polygon 

is presented in Fig. 6.  

 
 

 

 

Fig. 6. The mechanisms, the velocity polygon and the 

accelerations polygon   

The acceleration t
DB2

a  is found and implicitly the angular 

acceleration 2
~  together to the tangential component of 

relative acceleration t
BB 12

a .With the points 1'b  and 2'b  

known in this polygon, the points 1'c  and 2'c  are found 

in a manner similar to the one applied for finding the 

points 1c  and 2c  from the velocities polygon. In the 

polygon of accelerations there are constructed the 

triangles 111 ABC~'c'b'a  and 222 DBC~'c'b'd  

respectively. Finally, the point 3'b  is found from the 

condition similar to the one from velocities, namely 'b  

divides 21 'c'c  in the same ratio as the point B  divides 

the segment 21CC : 

3232 'c'c'b'b   
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At this moment, the analysis is complete. 

4 Conclusions 

The present work proposes a graphical-analytical method 

for the kinematics analysis for a plane mechanism with 

rotating cam and oscillating flat-face follower. The 

principle of the method consists in considering 

simultaneously both the actual mechanism and the 

equivalent mechanisms with lower pairs. In this manner, 

the motion from the cam-follower joint can be 

decomposed into two motions of the contact point, a first 

motion of the contact point with respect to the profile of 

the cam and a second motion between the contact point 

and the profile of the follower. These two motions are 

necessary for establishing a number of components of the 

relative accelerations of the contact point-cam and of the 

contact point-follower.  
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