

Integration of industrial intelligence elements in industrial procedures

Angela Suzana RÎPANU¹, Radu Cătălin ȚARCĂ², Tiberiu VESSELÉNYI²

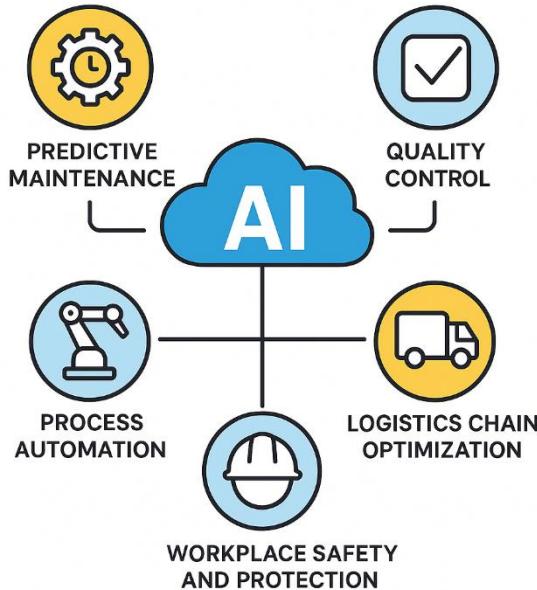
¹ Doctoral School of Industrial Engineering, University of Oradea, Oradea, Romania

²Department of Mechatronics, University of Oradea, Oradea, Romania

Email: laboratordigital@yahoo.com

Abstract. The Fourth Industrial Revolution (Industry 4.0) introduces a new era of digitalization, automation, and intelligent decision-making across industrial systems. Central to this transformation is the integration of Artificial Intelligence (AI), which enables real-time data processing, predictive analytics, workflow optimization, and increased product quality. This paper provides an overview of the main application areas of AI in industrial environments, including predictive maintenance, quality control, process automation, logistics optimization, and workplace safety. Through the analysis of a predictive enterprise evaluation model, the study highlights the interconnected nature of production and marketing processes and the role of AI in synchronizing supply and demand. Furthermore, the paper outlines a strategic guide for implementing AI within an enterprise, emphasizing data readiness, technological selection, organizational alignment, and continuous improvement. The findings underline that the adoption of AI represents not only a technological upgrade but a fundamental organizational transformation essential for competitiveness and long-term sustainability in modern industry.

1. Introduction


The 4.0 industrial revolution brings to the forefront the digitization and advanced automation of production processes.

The term "Industrialization 4.0" aims to initiate the Fourth Industrial Revolution. The first industrial revolution was mechanization with water and steam power, followed by the second industrial revolution: mass production, using electric power-driven conveyors and subsequently the third industrial revolution or digital revolution with the use of electronic and IT products (see also command with programmable connections) to automate production.

The term "4.0" refers to Software products (Programs), which usually refer to major changes as a new version, the first figure in the version number is incremented by one and at the same time the second digit starts from scratch.

Artificial Intelligence (AI) plays a central role, enabling optimization of workflows, cost reduction and product quality. [1], [2].

2. Areas of application

Figure 1 Integration of Artificial Intelligence Elements in Industrial Processes [3]

a) Predictive maintenance

Predictive maintenance is the use of digital technologies (sensors, IA algorithms, machine learning) to anticipate equipment failures before they occur, allowing for programmed and efficient interventions [4].

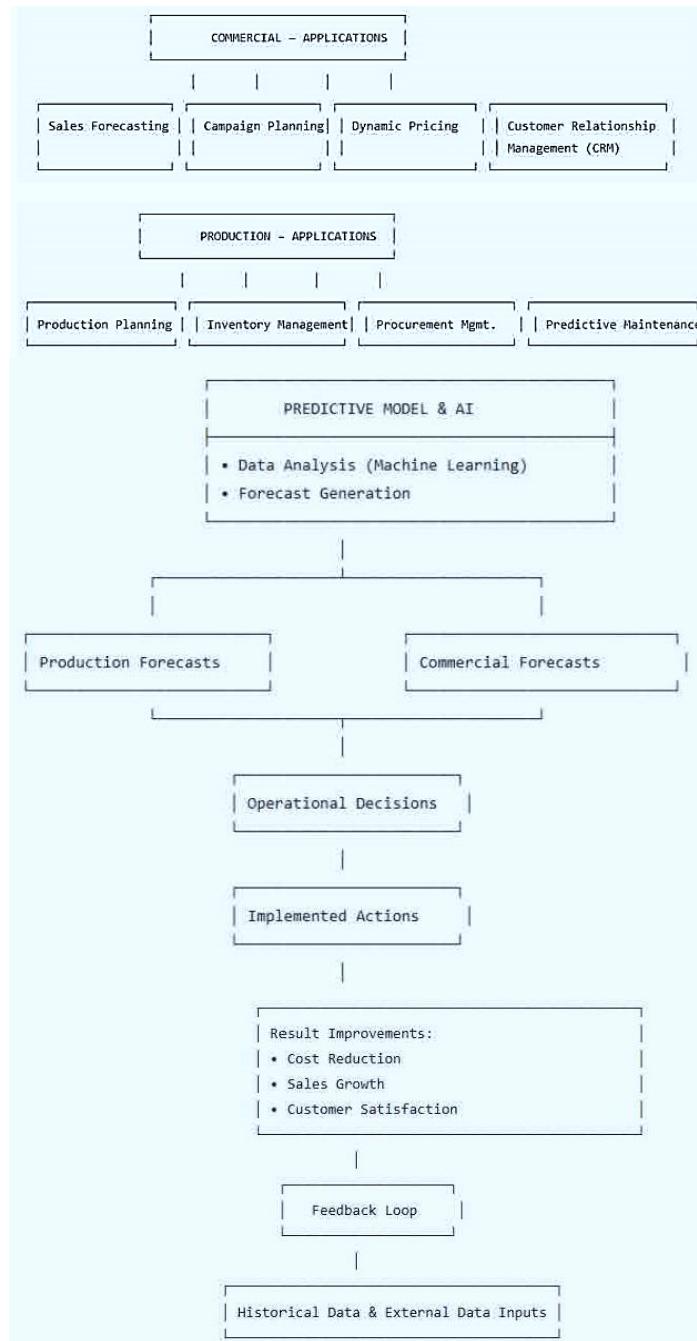
b) Quality control

Quality control requires verification of finished products and manufacturing processes to ensure that they comply with the required standards. By integrating IA, this process becomes automated, fast and accurate, reducing human errors and material losses [5].

c) Process automation

Process automation is the use of technologies (robots, control systems, intelligent software) to perform tasks without direct human intervention. Integration of IA allows systems not only to repeat instructions but also to learn, adapt and make decisions in real time [6].

d) Optimization of the logistics chain


The logistics chain comprises all stages through which a product passes from producer to consumer: supply, transport, storage, distribution. Integration of IA allows smart planning and coordination of these processes to reduce costs and increase efficiency [7].

e) Security and labor protection

Safety and protection of work are all measures ensuring safe conditions for workers and preventing accidents or occupational diseases. By integrating IA, these measures become proactive, based on monitoring and prediction, not just on reaction after an incident [8].

3. Diagram of predictive evaluation of enterprise

Diagram illustrating the process of predictive assessment of an undertaking covering both production and marketing flows.

Figure 2 Diagram of predictive evaluation of enterprise [9].

1. Production Part

This part focuses on the internal optimisation of the manufacturing process to be as efficient and cost-effective as possible [10].

Data sources for forecasting:

- Production history: Product volume, cycle times, failure rates.
- Workshop data (IoT): Real-time data from machine sensors (temperature, vibration, use).

- Supply requirements: History of raw material deliveries, quality of suppliers.
- External conditions: Weather (may affect logistics), energy prices.

Types of Prognosis:

- Request for finished products: How much they have to produce to satisfy the sales for east.
- Equipment defects (Predictive maintenance): It predicts when a machine is likely to malfunction, allowing intervention before it happens.
- Raw material requirements: What and how much raw material is needed to fulfil the production plan.
- Optimizing times and costs: Forecasts which production lines are most effective for certain orders.

Practical applications:

- Production planning: Effective programming of production lines and exchanges.
- Stock management: Reducing excessive stocks (which block capital) and avoiding insufficient stocks (which lead to production stops). The goal is to have exactly what you need when you need it.
- Reduce downtime: Maintenance is based on real needs, not on a fixed timetable, increasing productivity.
- Quality assurance: Identification of patents leading to defective products.

2. Marketing Part

This part focuses on the market, customers and sales strategies to maximize revenue [11].

Data sources for forecasting:

- Historical sales data: The most important - what was sold, when, where and how much.
- Customer behavior: Data from CRM, shopping history, loyalty, reactions to campaigns.
- Market data: Industry trends, competition activity, economic indicators.
- Marketing campaigns: The past performance of promotions, the online channel, the traffic on the website.
- External environment: Seasonality, holidays, social events.
- Types of Prognosis:
 - Sales forecast: Estimate future sales volume over future periods (weeks, months, quarters). It's the basis for all the other plans.
 - Demand forecasting: Similar but broader, take into account external factors to estimate total market demand for a product.
 - Feeling analysis: Analyze social media reviews and posts to anticipate customer trends and reactions.
 - Forecasting customer behavior: Who is most eligible to buy a particular product? Which clients are in danger of going to competition [12]?
- Practical applications:
 - Management of customer relations (CRM): Custom marketing campaigns and targeted offers for specific customer segments.
 - Optimizing stocks at sales points: Place the correct stock in the right store to reduce losses and increase customer satisfaction.
 - Dynamic prices: Price adjustment based on demand, stock, competition and customer behaviour (e.g. hotel or airline prices).
 - Planning marketing campaigns: Allocation of the budget to the most efficient marketing channels based on the investment return forecast (ROI).

As a conclusion, the diagram shows that production and marketing are not isolated entities. They are highly interconnected:

- Sales forecast (marketing) is the main input for the production plan.
- Production capacity and stocks available limit or allow sales opportunities.
- Feedback from implementation of decisions is collected (as new historical data) and used to permanently refine predictive models in a continuous cycle of improvement [13].

4. Strategic guide to the implementation of IA enterprise

Implementing AI in the enterprise includes the following steps [14]:

Initial analysis and target setting

- Identifies major problems in the company that can be solved with IA (e.g. high maintenance costs, high production times, quality errors).
- Define SMART targets (Specific, Measured, Reachable, Relevant, terms).
- Evaluates the current level of digitization and data collection.

Creating a multidisciplinary team

- Includes specialists in: industrial engineering, IT, management, data analysis and cyber security.
- Possibly working with external partners (universities, consultancy firms).

Audit and data preparation

- Check what data already exists (production, logistics, customers, maintenance).
- Provides data quality (cleaning, standardization).
- Deploy IoT sensors and systems to collect real time data if missing.

Selection of appropriate AI technologies

- Predictive maintenance → machine learning algorithms.
- Quality control → artificial vision and deep learning.
- Automation processes → intelligent robots and RPA (Robotic Process Automation).
- Managerial decisions → predictive models and big data analysis.

Pilot implementation (Small test projects)

- Choose a limited process (e.g. a production line, a logistics section).
- Runs the pilot project and measures the impact (cost reduction, productivity growth, defect reduction).
- Adjust and optimize before expansion.

Company scale and integration

- After the pilot's success, gradually expand implementation to other processes.
- Integrate IA with existing ERP, CRM and SCADA systems.
- Set internal standards for the use of IA.

Training and adaptation of staff

- Provides training for employees in using IA tools.
- Promote digital culture and reduce resistance to change.
- It encourages collaboration between people and technology (Human + AI).

Security and ethical issues

- Protects data through cyber security measures.
- Provides transparency of the algorithms used (avoid the "black box").
- Observe data confidentiality and AI regulations legislation.

Continuous monitoring and improvement

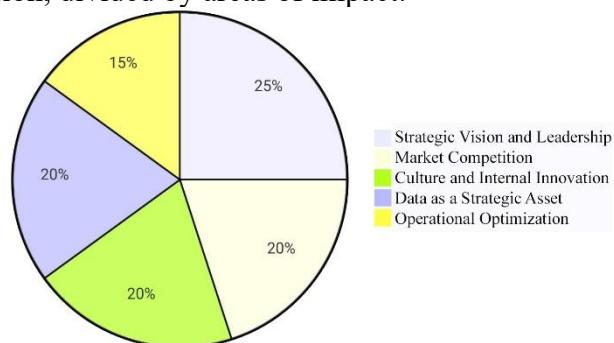
- Constantly assess the performance of IA systems through KPI indicators.
- Update model IA as new data appears.
- It constantly innovates to maintain the competitive advantage.

Expected benefits

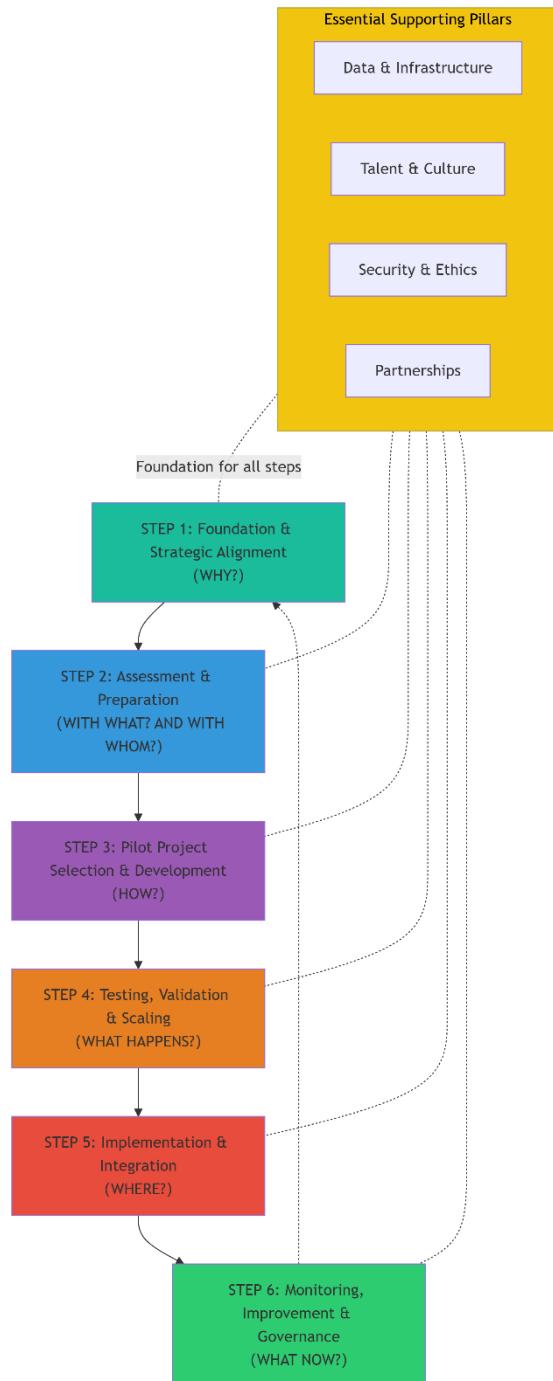
- Reduction of operational costs.
- Productivity and quality increase.
- Quick and data-based decisions.
- Flexibility and adaptability to the market.
- Increased safety for employees

Implementation of IA should not be seen as an "IT project", but as an organisational transformation strategy. Success depends on the clarity of objectives, the quality of data and the involvement of people [15].

Explanation of the Visual Elements in Figure 3:


- 1. Main flow (Footsteps 1 to 6):** It is a logical sequence, where the result of one step feeds the following.
- 2. Feedback arrow (from Step 6 to Step 1):** Underlines the cyclical and continuous nature of the process. After monitoring, you will identify new opportunities for improvement or new projects, restarting the cycle.
- 3. Support poles (Lower Yellow Bar):** They underpin the entire structure, illustrating that they support every step of the process. Without these pillars, the whole process is risky.
- 4. Colors:** Each step has a distinct color to be easily differentiated and retained. The essential pillars are highlighted with yellow, a color associated with warnings and importance.

This chart provides a quick and easy-to-understand overview of the full AI adoption journey.


5. Future personal contributions

AI implementation is not only a technical project but one of the most significant strategic contributions a leader can make to an enterprise. My contribution will be multidimensional and will transform the company in the long term.

My main contribution, divided by areas of impact:

Figure 4 The Strategic Contribution of the Implementation of the [6]

Figure 3 AI Strategic Guide to Enterprise [16]

Another Strategic Vision and Leadership

Visioner and Direction: I identify where technology can align with business objectives. Answer the question "Why?" - why are we investing in AI? To increase profit, earn market share, survive.

I've taken risk and I've taken the decision: You had the courage to bet on something new and to allocate resources (money, people, time) to a more efficient future. This is the essence

of leadership.

I have put **Foundstones for the Future**: The one I implement today will be the basis on which all future digital innovations of the company will be built. I built a platform for growth and scaling [17].

Increasing Competitiveness and Sustainability

Brought Enterprise to the Digital Era: We have transformed the company from a reactive one (which responds to problems after they appear) into a proactive and predictive one (which anticipates trends and problems).

We have **reduced the Distance to Competition**: If your competitors still haven't adopted AI, we've got a massive competitive advantage. If I already do, I have ensured the survival and relevance of the company on the market.

Raised Company Agility: With IA, the company can make faster data-based decisions and react more quickly to market changes [18].

Operational Optimisation and Profit Growth

This is the most easily measurable contribution (**Financial Direct Impact**):

Significant cost reductions:

In Production: Decrease in machine shutdown times, reduction of the rebate, optimisation of energy consumption and raw materials.

Logistics: Optimization of supply and distribution routes, perfect stock management.

Income increases:

In Marketing: Increase the conversion rate by customization, better identification of lead, dynamic prices that maximize profit.

Increasing customer satisfaction through better and anticipated services, leading to loyalty and recommendations.

Cultural and Mentality Transformation

It is one of those strategic investments that, once successfully implemented, become the company's central nervous system and the main source of its competitive advantage [19].

6. Conclusion

The digital transformation driven by Industry 4.0 fundamentally reshapes how enterprises operate, with artificial intelligence emerging as the core component of this evolution. The analysis demonstrates that AI technologies are not isolated tools but integrated elements that simultaneously optimize production, logistics, commercial activities, and operational safety. The application of AI in predictive maintenance, quality control, process automation, and supply chain management enables companies to anticipate failures, reduce errors, minimize costs, and increase operational efficiency. At the same time, commercial analytics and demand forecasting strengthen the ability of enterprises to make fast, data-driven decisions, improving sales strategies and customer relations.

The predictive evaluation model clearly illustrates the interdependence between production and marketing: commercial data determine production planning, while operational capacity influences sales potential. This dynamic creates a continuous improvement cycle in which feedback constantly refines AI models for greater accuracy.

The implementation strategy shows that success depends not only on technology but also on data preparation, team expertise, integration with existing systems, and effective change management. It is a transformative process that requires clear vision, strong leadership, and a culture oriented toward innovation.

Future contributions highlight that AI adoption is a major catalyst for competitiveness, agility, and long-term sustainability. Such transformation brings measurable benefits — increased productivity, reduced costs, and faster managerial decisions — as well as intangible benefits like modernizing the organizational culture and establishing a proactive mindset. In conclusion, integrating artificial intelligence into industrial processes is not merely a technological investment, but a profound strategic transformation that shapes the evolution of the entire enterprise. Organizations that adopt AI coherently and purposefully secure not only their survival in the modern industrial landscape but also a sustainable competitive advantage in the long run..

References

- [1] Gao, R. X., et al. (2024). *Artificial Intelligence in manufacturing: State of the art, applications and challenges*. Robotics and Computer-Integrated Manufacturing.
- [2] Soldatos, J. (ed.). (2024). *Artificial Intelligence in Manufacturing*. Springer.
- [3] Soori, M., et al. (2023). *Digital twin for smart manufacturing: A review*. ScienceDirect / Elsevier.
- [4] Feng, X., et al. (2024). *Digital Twins for Discrete Manufacturing Lines: A Review*. Data.
- [5] Singh, R., et al. (2023). *Edge AI: A survey*.
- [6] Plathottam, S. J., et al. (2023). *A review of artificial intelligence applications in manufacturing operations*. AIChE / Applied Manufacturing Perspectives.
- [7] ResearchGate (2025). *Edge AI for Predictive Maintenance in Industrial IoT Environments*.
- [8] Rashid, A. B., et al. (2024). *AI revolutionizing industries worldwide: A comprehensive review*.
- [9] Puthanveettil Madathil, A., et al. (2025). *A review of explainable artificial intelligence in smart manufacturing*.
- [10] Velesaca, H. O., et al. (2025). *OPC-UA in artificial intelligence: a systematic review of the integration of OPC-UA with data mining and NLP*. Manufacturing Review.
- [11] OPC Foundation — „OPC Unified Architecture (OPC UA)” (official documentation).
- [12] IEC 62541 (seria) — *OPC UA (standard international)*. IEC Webstore.
- [13] Busboom, A., et al. (2024). *Automated generation of OPC UA information models*.
- [14] open62541 (GitHub) — implementare open-source OPC UA.
- [15] Ficili, I., et al. (2025). *Leveraging IoT, Cloud, and Edge Computing with AI*. Sensors (MDPI).
- [16] Meitz, L., et al. (2025). *A Literature Review Framework and Open Research Directions in Predictive Maintenance*. ScienceDirect.
- [17] Héctor, I., et al. (2024). *Predictive maintenance in Industry 4.0: a survey*.
- [18] *Industry 4.0 Driven Manufacturing Technologies* (colectiv, Springer).
- [19] Stefan Bornemann (7 martie 2016). „Revolution auf Kommando? – Industrie 4.0, eine Kritik”. *Zukunft der Arbeit*. Accessed: 19-Sep-2025.