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Abstract— This paper presents the integration of artificial intelligence (Al) into a multisensor smart
sofa designed for long-term monitoring of user behaviour and structural health. The system combines
load cells, pressure sensors, inertial and vibration sensing, as well as temperature and humidity, to
transform a conventional upholstered sofa into a cyber-physical product. On top of the signal
acquisition and preprocessing chain, a compact Al layer is implemented to classify usage scenarios
and sitting posture, detect shocks and abnormal events, monitor sedentary behaviour, and estimate a
wear score and the remaining useful life (RUL) of the sofa. Compared with existing smart chairs,
cushions and posture-monitoring systems, the proposed solution focuses on explainable models that
can run on a resource-constrained microcontroller while still offering meaningful feedback to users
and manufacturers. The paper summarises the data pipeline, the main Al modules and their
implementation constraints, and discusses open research directions for Al in smart upholstered
furniture.

Keywords— smart sofa, upholstered furniture, multisensor system, artificial intelligence, posture
recognition, sedentary behaviour, remaining useful life, condition-based maintenance.

Introduction

Research on smart seating started mainly from clinical applications. In these works, pressure mapping is
used to prevent pressure ulcers in wheelchair users and elderly patients [1], [2]. Clinical studies show that
optimised seat cushions and real-time pressure feedback can reduce the risk of ulcers, because they help to
control peak pressures and exposure time [1].

Later, smart chairs and office chairs were proposed for posture classification and sitting behaviour
monitoring in everyday environments. Reviews describe systems that use pressure mats, load cells and
inertial sensors together with machine learning models to detect sitting positions, sitting habits and
discomfort [3], [4]. These devices usually provide simple feedback, such as telling the user to sit upright or
not to lean forward.

Smart cushions go one step further. They embed arrays of force-sensitive or textile sensors in a flexible
pad and use Al to recognise sitting postures and to support posture training [5]-[7]. Some projects implement
microcontroller-based pressure sensing systems for office environments [8]. However, most of these
solutions focus only on the human user. They do not consider the structural health and lifetime of the furniture
item itself, and many of them rely on cloud resources instead of running all logic locally.

The smart sofa developed in the underlying doctoral research addresses this gap. A multisensor node is
integrated into an upholstered sofa and acquires, in real time, data about weight distribution, contact pressure,
shocks, vibrations and environmental conditions. Al models, designed to be small and explainable, are used
to classify usage scenarios and simple postures, detect abnormal events and estimate a Remaining Useful
Life (RUL) indicator at sofa level. The paper focuses on the Al part of this system and explains how it is
implemented on a low-cost microcontroller.

The goals of the paper are: (i) to review Al-based approaches for smart seating and condition monitoring
that are relevant for a multisensor sofa system; (ii) to describe the Al architecture implemented in the smart
sofa prototype, including the data pipeline, the features and the on-device models; (iii) to discuss how the Al
modules support user feedback, sedentary behaviour alerts and RUL estimation; and (iv) to outline research
directions for Al in smart upholstered furniture.



2. Related Work on Al for Smart Seating and Condition Monitoring

In clinical settings, pressure mapping is already an established tool. It is used to design and evaluate seat
cushions that reduce peak pressures and protect sensitive areas of the body [1], [2]. Studies report that
carefully designed cushions and regular repositioning, guided by pressure maps, can reduce the incidence of
pressure ulcers in high-risk patients [1].

Outside the clinic, smart sensing chairs and office chairs use pressure mats and load cells to detect sitting
posture and habits [3], [4]. Machine learning is often used to classify postures from labelled datasets, and the
output is converted to short messages to the user. For example, the chair can suggest to sit more upright or
to reduce asymmetry. Some systems also monitor the time spent in each posture to provide basic feedback
on sedentary behaviour [3].

Smart cushion systems embed small arrays of FSR or textile sensors in a seat pad. They train machine
learning models to recognise postures and to provide posture coaching [5]—[7]. Other works propose
microcontroller-based pressure sensing systems for sitting posture detection in offices [8]. These solutions
show that useful Al functions can be implemented with a limited number of sensors and modest computing
resources.

At the furniture level, there are research prototypes of smart couches designed for assisted living. For
example, sensorised couches have been tested with patients with cognitive diseases to monitor how the
furniture is used [3], [4]. However, these systems usually employ simple rule-based logic and do not include
explicit RUL or structural health indicators.

From the maintenance and reliability point of view, the concept of Remaining Useful Life has been widely
studied for industrial equipment. RUL prediction methods use sensor data and models to estimate the time
until a component reaches its end of life [9]. Condition-based maintenance (CBM) guidelines explain how
sensor data and diagnostic algorithms can be used to trigger maintenance actions based on actual condition
instead of fixed schedules [10]. Extensive reviews on fault diagnosis and fault-tolerant control underline the
importance of robust sensor fusion and anomaly detection in intelligent systems [11], [12].

The smart sofa described in this paper combines these directions. It uses Al for posture and behaviour
recognition, similar to smart cushions and chairs [3]-[8], and it also computes CBM-inspired indicators, such
as RUL and usage scores, based on multisensor data and diagnostic rules [9]-[12]. At the same time, the sofa
can be seen as part of a smart environment, where furniture is not passive but contributes data and indicators
to the overall ambient intelligence [13].

IoT devices and cyber-physical systems bring additional constraints. Multisensor aerial platforms, such as
air-scanning sniffer quadcopters for environmental monitoring, must balance sensing, communication and
on-board processing against strict limits on energy and payload [14]. Noje et al. show how approximation-
based operators can reduce the complexity of signal processing on resource-constrained embedded nodes
[15]-[17]. These works are relevant for the smart sofa, because they support the idea that Al modules must
be both computationally efficient and robust, so that they can run reliably on a low-cost microcontroller.

3. Multisensor Smart Sofa Platform

The smart sofa is based on a standard upholstered three-seat couch. A dedicated multisensor node is
integrated into the structure and the upholstery. In this way, the prototype behaves as a normal piece of
furniture for the user, but it also records how the sofa is loaded and how it is used over time.
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Figure 1 Sm sofa prototype

Four half-bridge load cells with HX711 conditioning modules are mounted in the sofa legs to measure total
weight and left/right distribution. Force-sensitive resistors (FSR) and low-cost piezoresistive patches are
embedded in the seat and backrest to reconstruct simple pressure maps and to detect zones of interest. An
inertial measurement unit (IMU) and a vibration sensor detect shocks, micro-movements and structural
vibrations, while a temperature—humidity sensor monitors the micro-climate in the upholstery.

The sensors are read by an Arduino-class microcontroller. Basic preprocessing includes offset
compensation, moving-average filtering and feature extraction, such as total weight, weight difference
between left and right, maximum and average pressure in defined zones, number of shocks, time of
occupancy and daily mean values of temperature and humidity. This classical signal processing stage
provides the input features for the Al layer.
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On the output side, the sofa provides local feedback through a 20x4 LCD and a tri-colour LED
“semaphore” mounted on the front. The LED encodes global status (OK, warning, alert), while the LCD
displays key indicators such as total weight, number of users, sedentary status, mould risk, and a numerical
score of usage and RUL. Events and time series are logged through the serial interface and can be visualised
in a dashboard for offline analysis. The Al models must therefore operate under two constraints: limited
memory and computing power on the microcontroller, and the need for explainable, traceable decisions that
can be communicated to non-expert users via simple messages.

4. Al Architecture and Data Pipeline\

To place Al in context, the data flow of the smart sofa can be seen as a four-stage pipeline: sensing;
preprocessing and feature extraction; Al layer; and user interface with logging. In the sensing stage, load
cells provide total weight and left/right distribution. Pressure sensors in the seat and backrest produce coarse
pressure maps. The IMU and vibration sensor measure shocks and micro-movements, and the temperature—
humidity sensor captures the environmental conditions.

In the preprocessing and feature extraction stage, each raw signal is filtered and normalised. Features such
as total weight, weight difference, occupancy time, average and maximum pressure in regions, shock counts
and micro-movement indexes are computed over fixed windows. These features form compact descriptions
of the current state of the sofa and its user.

The Al layer receives feature vectors and outputs discrete labels, such as “one user centred”, “two users”
or “edge sitting”. It also produces anomaly flags, for example “possible sensor fault”, and continuous scores,
such as a wear score and a RUL estimate. Finally, the user interface and logging stage maps labels and scores
to simple messages and LED states, while events are stored in EEPROM and exported via serial logs for
further analysis.
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Figure 2 Block diagram of data pipeline and Al architecture

The Al architecture adopted in the prototype is hybrid. Training and model selection are performed on a PC
using Python. Several candidate models are evaluated, such as small decision trees, shallow random forests,
simple k-nearest neighbour models and lightweight regression models. Once a model is chosen, it is translated
into C code and deployed on the Arduino. The structure and parameters are kept in a form that is compatible
with the microcontroller and with the dashboard implementation. This workflow follows recommendations for
efficient signal processing in loT devices, where algorithmic complexity must be controlled in order to fit the
limits of edge hardware [15].

The selected models follow the trend of tiny machine learning. The number of parameters is kept low and
the inference time is kept below a few milliseconds, while the accuracy remains acceptable for the target
application. At the same time, the models are kept interpretable: decision trees are written as nested if—else
rules, and linear regressions are expressed as weighted sums with clear physical meaning.

5. Al Modules in the Smart Sofa

The Al layer is organised into several modules. Each module addresses a specific task and uses dedicated
features derived from the multisensor data. The main modules cover scenario and posture recognition,
occupancy and number of users, shock and misuse detection, sedentary behaviour alerts, wear score and RUL
estimation, and usage score and system health.

Table 2 — Summary of Al modules in the smart sofa
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5.1 Scenario and Posture Recognition

The first module distinguishes between basic usage scenarios and simple postures. The main classes include:
sofa free, one user sitting in a balanced position, one user sitting off-centre, two users, and atypical loading
such as sitting on the edge. The features are mainly total weight, left/right distribution and pressure patterns in
the seat region. A small decision tree classifier is trained on labelled data obtained from laboratory sessions
with controlled scenarios. The tree is then implemented directly as a sequence of threshold-based conditions
in the microcontroller code. This is similar to smart cushion systems and smart posture chairs, where a limited
number of pressure sensors and machine learning methods are used to recognise sitting postures and behaviours

[51-{8].

5.2 Occupancy and Number of Users

Occupancy is treated as a binary decision (occupied versus free) based on total weight above a minimum
threshold. This avoids false positives generated by objects left on the sofa. The number of users is estimated
using a two-class classifier (one versus two users) that can be implemented as a small decision tree or a softmax
model with one or two dense layers. The key features are again total weight and its distribution between left
and right legs. The classification result is used not only for displaying the number of users on the LCD, but
also as input for higher-level modules. For example, sedentary behaviour is only evaluated if there is at least
one user, and structural stress is interpreted differently for one heavy user compared with two lighter users.

5.3 Shock and Misuse Detection

Shocks and potentially harmful events are detected by combining the acceleration magnitude from the IMU
with the vibration sensor signal. A peak acceleration above a configurable threshold, within a narrow time
window around a vibration burst, is interpreted as a confirmed shock. This logic can be seen as a simple binary
classifier with two sensor inputs and a temporal coincidence condition. The idea is similar to condition-based
maintenance approaches, where several parameters must indicate an abnormal state before an alarm is
generated [10]. For each confirmed shock, an event is stored, the LED turns red and the LCD displays an alert
together with a short recommendation. These events also contribute to the wear score and the RUL estimation.



5.4 Sedentary Behaviour Alert

Sedentary behaviour is one of the clearest examples of how Al turns raw sensor data into direct user
feedback. Sedentary episodes are defined as continuous sitting on the sofa with sufficient weight, combined
with a low level of micro-movement. The module uses an occupancy timer, the total weight and a micro-
movement index that is computed from FSR variations and IMU signals. If the sofa is occupied and the total
weight is relatively stable while the micro-movement index remains below a minimum threshold, a sedentary
timer is increased. When the timer exceeds a configurable limit, for example 45—60 minutes, the system raises
a sedentary alert: the LED switches to flashing yellow, the LCD suggests a short break, and the event is logged.
If the user stands up or moves more actively, the timer is reset or slowed down. This approach is consistent
with Al-assisted posture coaching systems, which combine posture recognition with time thresholds to
encourage healthier sitting patterns [5]-[7].

Timeline of sedentary behaviour detection
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Figure 3 Example timeline of sedentary behaviour detection

5.5 Wear Score and Remaining Useful Life Estimation

The RUL module estimates how much useful lifetime remains for the sofa, based on usage history and
mechanical stress indicators. The model starts from a reference lifetime, for example ten years, and adjusts it
according to the cumulative “dose” of mechanical loading. Relevant factors include hours of use, time under
high weight, number of shocks, left/right imbalance, and periods with adverse environmental conditions such
as high humidity. In the thesis, a linear regression model with quantised coefficients was selected for
implementation on the microcontroller. The model maps aggregated usage indicators to a RUL value expressed
in years. The regression is trained on synthetic or experimentally derived scenarios and then translated into
low-precision arithmetic suitable for the microcontroller. To provide an intuitive interpretation, a wear score
between 0 and 10 is derived from the RUL estimate. A score close to 10 indicates usage compatible with the
nominal lifetime, while lower scores indicate accelerated wear. The concept is aligned with RUL prediction
methods in industrial equipment, where sensor data and operational profiles are used to estimate remaining
lifetime [9].

Table 3 Factors used in the RUL model and their qualitative influence
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Figure 4 Example evolution of RUL and wear score for different usage scenarios
5.6 Usage Score and System Health

In addition to RUL, the Al layer computes a usage score that reflects how healthy the usage pattern is with
respect to recommended limits. This score combines several elements: number of shocks, time spent near
weight limits, duration of sedentary episodes and events related to unequal loading of the left and right sides.
The system health perspective is complemented by diagnostic logic inspired by fault diagnosis and CBM
literature [10]-[12]. Simple rules and anomaly detection mechanisms compare current sensor readings with
stored reference profiles in order to identify possible sensor faults or structural changes. Examples include a
leg that no longer carries its share of weight or a systematic decrease in cushioning stiffness. In future versions,
more sophisticated anomaly detection models can be explored, while still keeping the implementation
compatible with the microcontroller.

6. Experimental Evaluation and Discussion

The Al modules were evaluated using a combination of laboratory tests and user studies described in the thesis. In
laboratory conditions, controlled loading scenarios were applied on the sofa using standardised test equipment, while the
multisensor system recorded weight, pressure, acceleration and vibration signals. These datasets were used to derive
features, to train and to verify the decision trees and regression models, and to tune thresholds for shocks, sedentary
behaviour and mould risk.
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Table 4 Experimental scenarios used for Al validation
Category S1 S2 S3 S4 S5 S6
Description Nomal Edge sitting Frequppt . Rapid sitting | Asymmetric | Two users; composite
sitting repositioning | down occupancy scenario from S1-S5
Objective Baseline Edge loading / Low- Controlled Effect of Effect of combined
neutral stability amplitude shock asymmetric habits from S1-S5
occupancy vibrations (impact) habitual use | with two users
Duration 15 min 5 min 10 min 5 min 10 min 15 min
Participant Slow Sit on the left Reposition Three 5 min 0-3 min: symmetric
instructions | sitting in edge for 2.5 every 30 s “landings” leaning to sitting; 3—6 min: al-
the centre, | min, then on the | without from 10-15 the left, 5 ternating sit-to-stand;
minimal right edge for dropping cm height min leaning | 6—9 min: lateral
movement | 2.5 min to the right transfers with two
users; 9—12 min:
intensive load in the
centre; 12—15 min:
combined asymmetry
Log markers | S1 STAR | S2 START/ S3 START/ | S4 START/ | S5 START/ | S6 START/END
T/ END END END END END
KPI (key Occupancy | L/R balance, Vibration Shock-related | L/R balance, | Combined indicators
performance | , pressure | pressure zone, level, indicators pressure from S1-S5 for two
indicators) zone, L/R | WARNING/ pressure (peak zone, users (occupancy,
balance, ALERT zone, number | acceleration, number of imbalance, shocks,
vibration DEZEQ (left— of vibration WARNINGS | vibrations)
level right imbalance) | WARNINGS | burst count) / ALERTS

User-oriented experiments with different participants were then carried out on the instrumented sofa.
Participants performed predefined sitting scenarios such as normal sitting, leaning on one side, sitting on the edge,
two users, or repeated standing up and sitting down, followed by free usage sessions. For each session, the Al
outputs were logged and compared with manual annotations and structural observations.

The results showed that the simple Al models were able to distinguish reliably between the main usage
scenarios. Misclassifications occurred mainly in borderline conditions, for example when two users of very
different weights were present. Sedentary alerts were triggered according to the configured time thresholds and
were sensitive to micro-movements, which reduced false positives when users adjusted their posture.
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Figure 6 Accuracy or confusion matrix for scenario and posture classification

The RUL module behaved as expected in synthetic scenarios that represented moderate, intensive and abusive
usage. The wear score decreased faster for sessions with repeated shocks, high loads and long sedentary periods,
while remaining close to the nominal value for moderate, balanced usage. Although the absolute RUL numbers
depend on model calibration and assumptions about the nominal lifetime, the relative behaviour across scenarios
is consistent and can support maintenance decisions and user awareness.

7. Conclusions and Future Work

This paper has presented the integration of artificial intelligence into a multisensor smart sofa. Starting from
the hardware platform and the data pipeline, the paper has focused on the Al modules for scenario recognition,
sedentary behaviour, shock detection, wear scoring and RUL estimation. The results show that compact,
explainable models can be embedded in a resource-constrained controller and still provide meaningful, real-time
feedback to users and manufacturers, while also supporting a condition-based maintenance perspective on the
furniture lifetime.

Compared with existing smart chairs and cushions, the smart sofa extends the scope from posture and comfort
monitoring to structural health and lifetime indicators, and from laboratory-style pressure mapping to an
integrated, product-like implementation [3]-[9]. At the same time, the link with RUL and condition-based
maintenance methods suggests that similar Al techniques used for industrial assets can be adapted to domestic
furniture [9]-[12].

Future work will focus on several directions. First, longer-term data collection with real users will allow better
calibration and validation of the RUL and anomaly detection models. Second, incremental and personalised Al
models could adapt to specific users and usage patterns while preserving privacy, for example by keeping all
computations on the sofa and limiting data export. Third, more advanced fault diagnosis techniques for sensors
and structure can be explored, inspired by recent work on fault-tolerant control and CBM [11], [12]. Finally, the
smart sofa can be integrated into broader smart home environments, where its Al-derived indicators contribute to
overall wellbeing and energy-aware operation [13].
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