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Abstract— This paper presents the integration of artificial intelligence (AI) into a multisensor smart 

sofa designed for long-term monitoring of user behaviour and structural health. The system combines 

load cells, pressure sensors, inertial and vibration sensing, as well as temperature and humidity, to 

transform a conventional upholstered sofa into a cyber-physical product. On top of the signal 

acquisition and preprocessing chain, a compact AI layer is implemented to classify usage scenarios 

and sitting posture, detect shocks and abnormal events, monitor sedentary behaviour, and estimate a 

wear score and the remaining useful life (RUL) of the sofa. Compared with existing smart chairs, 

cushions and posture-monitoring systems, the proposed solution focuses on explainable models that 

can run on a resource-constrained microcontroller while still offering meaningful feedback to users 

and manufacturers. The paper summarises the data pipeline, the main AI modules and their 

implementation constraints, and discusses open research directions for AI in smart upholstered 

furniture. 
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Introduction 

Research on smart seating started mainly from clinical applications. In these works, pressure mapping is 

used to prevent pressure ulcers in wheelchair users and elderly patients [1], [2]. Clinical studies show that 

optimised seat cushions and real-time pressure feedback can reduce the risk of ulcers, because they help to 

control peak pressures and exposure time [1]. 

Later, smart chairs and office chairs were proposed for posture classification and sitting behaviour 

monitoring in everyday environments. Reviews describe systems that use pressure mats, load cells and 

inertial sensors together with machine learning models to detect sitting positions, sitting habits and 

discomfort [3], [4]. These devices usually provide simple feedback, such as telling the user to sit upright or 

not to lean forward. 

Smart cushions go one step further. They embed arrays of force-sensitive or textile sensors in a flexible 

pad and use AI to recognise sitting postures and to support posture training [5]–[7]. Some projects implement 

microcontroller-based pressure sensing systems for office environments [8]. However, most of these 

solutions focus only on the human user. They do not consider the structural health and lifetime of the furniture 

item itself, and many of them rely on cloud resources instead of running all logic locally. 

The smart sofa developed in the underlying doctoral research addresses this gap. A multisensor node is 

integrated into an upholstered sofa and acquires, in real time, data about weight distribution, contact pressure, 

shocks, vibrations and environmental conditions. AI models, designed to be small and explainable, are used 

to classify usage scenarios and simple postures, detect abnormal events and estimate a Remaining Useful 

Life (RUL) indicator at sofa level. The paper focuses on the AI part of this system and explains how it is 

implemented on a low-cost microcontroller. 

The goals of the paper are: (i) to review AI-based approaches for smart seating and condition monitoring 

that are relevant for a multisensor sofa system; (ii) to describe the AI architecture implemented in the smart 

sofa prototype, including the data pipeline, the features and the on-device models; (iii) to discuss how the AI 

modules support user feedback, sedentary behaviour alerts and RUL estimation; and (iv) to outline research 

directions for AI in smart upholstered furniture. 



 

 

2. Related Work on AI for Smart Seating and Condition Monitoring 
 

In clinical settings, pressure mapping is already an established tool. It is used to design and evaluate seat 

cushions that reduce peak pressures and protect sensitive areas of the body [1], [2]. Studies report that 

carefully designed cushions and regular repositioning, guided by pressure maps, can reduce the incidence of 

pressure ulcers in high-risk patients [1]. 

Outside the clinic, smart sensing chairs and office chairs use pressure mats and load cells to detect sitting 

posture and habits [3], [4]. Machine learning is often used to classify postures from labelled datasets, and the 

output is converted to short messages to the user. For example, the chair can suggest to sit more upright or 

to reduce asymmetry. Some systems also monitor the time spent in each posture to provide basic feedback 

on sedentary behaviour [3]. 

Smart cushion systems embed small arrays of FSR or textile sensors in a seat pad. They train machine 

learning models to recognise postures and to provide posture coaching [5]–[7]. Other works propose 

microcontroller-based pressure sensing systems for sitting posture detection in offices [8]. These solutions 

show that useful AI functions can be implemented with a limited number of sensors and modest computing 

resources. 

At the furniture level, there are research prototypes of smart couches designed for assisted living. For 

example, sensorised couches have been tested with patients with cognitive diseases to monitor how the 

furniture is used [3], [4]. However, these systems usually employ simple rule-based logic and do not include 

explicit RUL or structural health indicators. 

From the maintenance and reliability point of view, the concept of Remaining Useful Life has been widely 

studied for industrial equipment. RUL prediction methods use sensor data and models to estimate the time 

until a component reaches its end of life [9]. Condition-based maintenance (CBM) guidelines explain how 

sensor data and diagnostic algorithms can be used to trigger maintenance actions based on actual condition 

instead of fixed schedules [10]. Extensive reviews on fault diagnosis and fault-tolerant control underline the 

importance of robust sensor fusion and anomaly detection in intelligent systems [11], [12]. 

The smart sofa described in this paper combines these directions. It uses AI for posture and behaviour 

recognition, similar to smart cushions and chairs [3]–[8], and it also computes CBM-inspired indicators, such 

as RUL and usage scores, based on multisensor data and diagnostic rules [9]–[12]. At the same time, the sofa 

can be seen as part of a smart environment, where furniture is not passive but contributes data and indicators 

to the overall ambient intelligence [13]. 

IoT devices and cyber-physical systems bring additional constraints. Multisensor aerial platforms, such as 

air-scanning sniffer quadcopters for environmental monitoring, must balance sensing, communication and 

on-board processing against strict limits on energy and payload [14]. Noje et al. show how approximation-

based operators can reduce the complexity of signal processing on resource-constrained embedded nodes 

[15]-[17]. These works are relevant for the smart sofa, because they support the idea that AI modules must 

be both computationally efficient and robust, so that they can run reliably on a low-cost microcontroller. 

 

3. Multisensor Smart Sofa Platform  
 

The smart sofa is based on a standard upholstered three-seat couch. A dedicated multisensor node is 

integrated into the structure and the upholstery. In this way, the prototype behaves as a normal piece of 

furniture for the user, but it also records how the sofa is loaded and how it is used over time. 



 

 

 

 
Figure 1 Smart sofa prototype 

 

Four half-bridge load cells with HX711 conditioning modules are mounted in the sofa legs to measure total 

weight and left/right distribution. Force-sensitive resistors (FSR) and low-cost piezoresistive patches are 

embedded in the seat and backrest to reconstruct simple pressure maps and to detect zones of interest. An 

inertial measurement unit (IMU) and a vibration sensor detect shocks, micro-movements and structural 

vibrations, while a temperature–humidity sensor monitors the micro-climate in the upholstery. 

The sensors are read by an Arduino-class microcontroller. Basic preprocessing includes offset 

compensation, moving-average filtering and feature extraction, such as total weight, weight difference 

between left and right, maximum and average pressure in defined zones, number of shocks, time of 

occupancy and daily mean values of temperature and humidity. This classical signal processing stage 

provides the input features for the AI layer. 
Table 1 Sensors and AI-relevant features 

Sensor Type Unit AI role 

Load cells 
Load‑cell + 
HX711 

Total weight, 

left/right 

weight 

Presence 

detection, 

number of 
users, 

overload, 

imbalance, 
entry into the 

wear 
score/RUL 

Force 

sensor 
FSR406 

Local pressure 

on seating and 

support areas 
(rest and 

backrest) 

User location, 

posture, 

pressure 
distribution, 

micro-motion 

index for 
sedentary 

lifestyle 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the output side, the sofa provides local feedback through a 20×4 LCD and a tri-colour LED 

“semaphore” mounted on the front. The LED encodes global status (OK, warning, alert), while the LCD 

displays key indicators such as total weight, number of users, sedentary status, mould risk, and a numerical 

score of usage and RUL. Events and time series are logged through the serial interface and can be visualised 

in a dashboard for offline analysis. The AI models must therefore operate under two constraints: limited 

memory and computing power on the microcontroller, and the need for explainable, traceable decisions that 

can be communicated to non-expert users via simple messages. 

 

4. AI Architecture and Data Pipeline\ 
 

To place AI in context, the data flow of the smart sofa can be seen as a four-stage pipeline: sensing; 

preprocessing and feature extraction; AI layer; and user interface with logging. In the sensing stage, load 

cells provide total weight and left/right distribution. Pressure sensors in the seat and backrest produce coarse 

pressure maps. The IMU and vibration sensor measure shocks and micro-movements, and the temperature–

humidity sensor captures the environmental conditions. 

In the preprocessing and feature extraction stage, each raw signal is filtered and normalised. Features such 

as total weight, weight difference, occupancy time, average and maximum pressure in regions, shock counts 

and micro-movement indexes are computed over fixed windows. These features form compact descriptions 

of the current state of the sofa and its user. 

The AI layer receives feature vectors and outputs discrete labels, such as “one user centred”, “two users” 

or “edge sitting”. It also produces anomaly flags, for example “possible sensor fault”, and continuous scores, 

such as a wear score and a RUL estimate. Finally, the user interface and logging stage maps labels and scores 

to simple messages and LED states, while events are stored in EEPROM and exported via serial logs for 

further analysis. 

 

Inertial 

measurement 

unit 

GY‑521 

3-axis 

acceleration, 

peaks |a| 

Shock 
detection, 

activity level, 

confirmation of 
large 

movements 

versus static 
stays 

Vibrations 
sensor  

PVDF / 
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Figure 2 Block diagram of data pipeline and AI architecture 

 

The AI architecture adopted in the prototype is hybrid. Training and model selection are performed on a PC 

using Python. Several candidate models are evaluated, such as small decision trees, shallow random forests, 

simple k-nearest neighbour models and lightweight regression models. Once a model is chosen, it is translated 

into C code and deployed on the Arduino. The structure and parameters are kept in a form that is compatible 

with the microcontroller and with the dashboard implementation. This workflow follows recommendations for 

efficient signal processing in IoT devices, where algorithmic complexity must be controlled in order to fit the 

limits of edge hardware [15]. 

The selected models follow the trend of tiny machine learning. The number of parameters is kept low and 

the inference time is kept below a few milliseconds, while the accuracy remains acceptable for the target 

application. At the same time, the models are kept interpretable: decision trees are written as nested if–else 

rules, and linear regressions are expressed as weighted sums with clear physical meaning. 

 

5. AI Modules in the Smart Sofa  
 

The AI layer is organised into several modules. Each module addresses a specific task and uses dedicated 

features derived from the multisensor data. The main modules cover scenario and posture recognition, 

occupancy and number of users, shock and misuse detection, sedentary behaviour alerts, wear score and RUL 

estimation, and usage score and system health. 

Table 2 – Summary of AI modules in the smart sofa 

AI 

module / 

task 

Main input 

features 
Model / logic Outputs 

Scenario / 

posture 

recognition 

Total weight; 

left/right 

weight 
distribution; 

seat pressure 

zones 

Small decision tree 

trained on labelled 

scenarios; 
implemented as 

threshold-based 

rules on 
microcontroller 

Usage scenario 

label (free, 1 

user centred, 1 
user off-centre, 

2 users, edge 

sitting, etc.) 

Occupancy 

& number 

of users 

Total weight; 

leg load 

distribution; 

hysteresis 

thresholds 

Binary decision for 

occupancy; 2-class 

classifier (1 vs. 2 

users) using simple 

tree or softmax 
layer 

Occupancy flag 

(0/1); estimated 

number of users 

(0, 1, 2) 

Shock and 

misuse 
detection 

IMU 

acceleration 
magnitude; 

vibration 

Binary classifier 

with temporal 
window; rule-

based confirmation 

Shock event 

flag; shock 
counter; 

contribution to 



 

 

sensor 
envelope; time 

coincidence of 

peaks 

when both sensors 
indicate a shock 

wear score and 
RUL 

Sedentary 

behaviour 

alert 

Occupancy 

state; total 

weight; micro-
movement 

index from 

FSR and IMU; 
sedentary 

timer 

Timer-based logic 

combined with 

thresholds on 
micro-movement 

index and 

minimum weight 

Sedentary alert 

flag; LED 

blinking 
pattern; log of 

sedentary 

episodes 

Wear score 
& RUL 

estimation 

Aggregated 
usage 

indicators 

(hours of use, 

time over 

weight limits, 

number of 
shocks, L/R 

imbalance, 

adverse T/RH) 

Low-order linear 
regression with 

quantised 

coefficients; 

mapping to 

dimensionless 

wear score 

RUL estimate 
(years); wear 

score from 0 to 

10 

Usage 
score & 

system 

health 

Shock counter; 
time near 

limits; 

sedentary 
episodes; L/R 

imbalance; 

sensor 
coherence 

metrics 

Rule-based 
aggregation of 

indicators; simple 

anomaly detection 
vs. reference 

profiles 

Usage score; 
system status 

flags; potential 

sensor/structural 
anomaly flags 

5.1 Scenario and Posture Recognition 

The first module distinguishes between basic usage scenarios and simple postures. The main classes include: 

sofa free, one user sitting in a balanced position, one user sitting off-centre, two users, and atypical loading 

such as sitting on the edge. The features are mainly total weight, left/right distribution and pressure patterns in 

the seat region. A small decision tree classifier is trained on labelled data obtained from laboratory sessions 

with controlled scenarios. The tree is then implemented directly as a sequence of threshold-based conditions 

in the microcontroller code. This is similar to smart cushion systems and smart posture chairs, where a limited 

number of pressure sensors and machine learning methods are used to recognise sitting postures and behaviours 

[5]–[8]. 

 

5.2 Occupancy and Number of Users 

Occupancy is treated as a binary decision (occupied versus free) based on total weight above a minimum 

threshold. This avoids false positives generated by objects left on the sofa. The number of users is estimated 

using a two-class classifier (one versus two users) that can be implemented as a small decision tree or a softmax 

model with one or two dense layers. The key features are again total weight and its distribution between left 

and right legs. The classification result is used not only for displaying the number of users on the LCD, but 

also as input for higher-level modules. For example, sedentary behaviour is only evaluated if there is at least 

one user, and structural stress is interpreted differently for one heavy user compared with two lighter users. 
 

5.3 Shock and Misuse Detection 

Shocks and potentially harmful events are detected by combining the acceleration magnitude from the IMU 

with the vibration sensor signal. A peak acceleration above a configurable threshold, within a narrow time 

window around a vibration burst, is interpreted as a confirmed shock. This logic can be seen as a simple binary 

classifier with two sensor inputs and a temporal coincidence condition. The idea is similar to condition-based 

maintenance approaches, where several parameters must indicate an abnormal state before an alarm is 

generated [10]. For each confirmed shock, an event is stored, the LED turns red and the LCD displays an alert 

together with a short recommendation. These events also contribute to the wear score and the RUL estimation. 



 

 

5.4 Sedentary Behaviour Alert 

Sedentary behaviour is one of the clearest examples of how AI turns raw sensor data into direct user 

feedback. Sedentary episodes are defined as continuous sitting on the sofa with sufficient weight, combined 

with a low level of micro-movement. The module uses an occupancy timer, the total weight and a micro-

movement index that is computed from FSR variations and IMU signals. If the sofa is occupied and the total 

weight is relatively stable while the micro-movement index remains below a minimum threshold, a sedentary 

timer is increased. When the timer exceeds a configurable limit, for example 45–60 minutes, the system raises 

a sedentary alert: the LED switches to flashing yellow, the LCD suggests a short break, and the event is logged. 

If the user stands up or moves more actively, the timer is reset or slowed down. This approach is consistent 

with AI-assisted posture coaching systems, which combine posture recognition with time thresholds to 

encourage healthier sitting patterns [5]–[7]. 

 

 

Figure 3 Example timeline of sedentary behaviour detection 

 

5.5 Wear Score and Remaining Useful Life Estimation 

The RUL module estimates how much useful lifetime remains for the sofa, based on usage history and 

mechanical stress indicators. The model starts from a reference lifetime, for example ten years, and adjusts it 

according to the cumulative “dose” of mechanical loading. Relevant factors include hours of use, time under 

high weight, number of shocks, left/right imbalance, and periods with adverse environmental conditions such 

as high humidity. In the thesis, a linear regression model with quantised coefficients was selected for 

implementation on the microcontroller. The model maps aggregated usage indicators to a RUL value expressed 

in years. The regression is trained on synthetic or experimentally derived scenarios and then translated into 

low-precision arithmetic suitable for the microcontroller. To provide an intuitive interpretation, a wear score 

between 0 and 10 is derived from the RUL estimate. A score close to 10 indicates usage compatible with the 

nominal lifetime, while lower scores indicate accelerated wear. The concept is aligned with RUL prediction 

methods in industrial equipment, where sensor data and operational profiles are used to estimate remaining 

lifetime [9]. 
 

Table 3 Factors used in the RUL model and their qualitative influence  

Factor Indicator Trend Observation 

Time of use 

Busy hours/ 

day; very 
long 

sessions 

↑ wear 

High sedentary 
lifestyle accelerates 

the wear of soft 

components (cover, 

foam, padding) 

Loading 

and 
distribution 

L/R 

Average 

weight; 
variation in 

L/R ratio 

↑ wear 

when it is 
large/ 

unbalanced 

It wears the 

structure locally 

Shocks/  

impact 

Number/ 

amplitude 
of events 

↑ wear 

Correlated with 

breakage/ noise 
complaints 

0
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Figure 4 Example evolution of RUL and wear score for different usage scenarios 

5.6 Usage Score and System Health 

In addition to RUL, the AI layer computes a usage score that reflects how healthy the usage pattern is with 

respect to recommended limits. This score combines several elements: number of shocks, time spent near 

weight limits, duration of sedentary episodes and events related to unequal loading of the left and right sides. 

The system health perspective is complemented by diagnostic logic inspired by fault diagnosis and CBM 

literature [10]–[12]. Simple rules and anomaly detection mechanisms compare current sensor readings with 

stored reference profiles in order to identify possible sensor faults or structural changes. Examples include a 

leg that no longer carries its share of weight or a systematic decrease in cushioning stiffness. In future versions, 

more sophisticated anomaly detection models can be explored, while still keeping the implementation 

compatible with the microcontroller. 

6. Experimental Evaluation and Discussion 
 

 

The AI modules were evaluated using a combination of laboratory tests and user studies described in the thesis. In 

laboratory conditions, controlled loading scenarios were applied on the sofa using standardised test equipment, while the 

multisensor system recorded weight, pressure, acceleration and vibration signals. These datasets were used to derive 

features, to train and to verify the decision trees and regression models, and to tune thresholds for shocks, sedentary 

behaviour and mould risk. 
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Figure 5 Schematic of diagnostic and fault-tolerance logic 

Table 4 Experimental scenarios used for AI validation 

Category S1 S2 S3 S4 S5 S6 

Description 
Normal 

sitting 
Edge sitting 

Frequent 

repositioning 

Rapid sitting 

down 

Asymmetric 

occupancy 

Two users; composite 

scenario from S1–S5 

Objective Baseline 

neutral 

occupancy 

Edge loading / 

stability 

Low-

amplitude 

vibrations 

Controlled 

shock 

(impact) 

Effect of 

asymmetric 

habitual use 

Effect of combined 

habits from S1–S5 

with two users 

Duration 15 min 5 min 10 min 5 min 10 min 15 min 

Participant 

instructions 

Slow 

sitting in 

the centre, 

minimal 

movement 

Sit on the left 

edge for 2.5 

min, then on the 

right edge for 

2.5 min 

Reposition 

every 30 s 

without 

dropping 

Three 

“landings” 

from 10–15 

cm height 

5 min 

leaning to 

the left, 5 

min leaning 

to the right 

0–3 min: symmetric 

sitting; 3–6 min: al-

ternating sit-to-stand; 

6–9 min: lateral 

transfers with two 

users; 9–12 min: 

intensive load in the 

centre; 12–15 min: 

combined asymmetry 

Log markers S1_STAR

T/ END 

S2_START/ 

END 

S3_START/ 

END 

S4_START/ 

END 

S5_START/

END 

S6_START/END 

KPI (key 

performance 

indicators) 

Occupancy

, pressure 

zone, L/R 

balance, 

vibration 

level 

L/R balance, 

pressure zone, 

WARNING/ 

ALERT 

DEZEQ (left–

right imbalance) 

Vibration 

level, 

pressure 

zone, number 

of 

WARNINGS 

Shock-related 

indicators 

(peak 

acceleration, 

vibration 

burst count) 

L/R balance, 

pressure 

zone, 

number of 

WARNINGS 

/ ALERTS 

Combined indicators 

from S1–S5 for two 

users (occupancy, 

imbalance, shocks, 

vibrations) 

User-oriented experiments with different participants were then carried out on the instrumented sofa. 

Participants performed predefined sitting scenarios such as normal sitting, leaning on one side, sitting on the edge, 

two users, or repeated standing up and sitting down, followed by free usage sessions. For each session, the AI 

outputs were logged and compared with manual annotations and structural observations. 

The results showed that the simple AI models were able to distinguish reliably between the main usage 

scenarios. Misclassifications occurred mainly in borderline conditions, for example when two users of very 

different weights were present. Sedentary alerts were triggered according to the configured time thresholds and 

were sensitive to micro-movements, which reduced false positives when users adjusted their posture. 

 



 

 

 
Figure 6 Accuracy or confusion matrix for scenario and posture classification 

 

The RUL module behaved as expected in synthetic scenarios that represented moderate, intensive and abusive 

usage. The wear score decreased faster for sessions with repeated shocks, high loads and long sedentary periods, 

while remaining close to the nominal value for moderate, balanced usage. Although the absolute RUL numbers 

depend on model calibration and assumptions about the nominal lifetime, the relative behaviour across scenarios 

is consistent and can support maintenance decisions and user awareness. 

7. Conclusions and Future Work 
 

This paper has presented the integration of artificial intelligence into a multisensor smart sofa. Starting from 

the hardware platform and the data pipeline, the paper has focused on the AI modules for scenario recognition, 

sedentary behaviour, shock detection, wear scoring and RUL estimation. The results show that compact, 

explainable models can be embedded in a resource-constrained controller and still provide meaningful, real-time 

feedback to users and manufacturers, while also supporting a condition-based maintenance perspective on the 

furniture lifetime. 

Compared with existing smart chairs and cushions, the smart sofa extends the scope from posture and comfort 

monitoring to structural health and lifetime indicators, and from laboratory-style pressure mapping to an 

integrated, product-like implementation [3]–[9]. At the same time, the link with RUL and condition-based 

maintenance methods suggests that similar AI techniques used for industrial assets can be adapted to domestic 

furniture [9]–[12]. 

Future work will focus on several directions. First, longer-term data collection with real users will allow better 

calibration and validation of the RUL and anomaly detection models. Second, incremental and personalised AI 

models could adapt to specific users and usage patterns while preserving privacy, for example by keeping all 

computations on the sofa and limiting data export. Third, more advanced fault diagnosis techniques for sensors 

and structure can be explored, inspired by recent work on fault-tolerant control and CBM [11], [12]. Finally, the 

smart sofa can be integrated into broader smart home environments, where its AI-derived indicators contribute to 

overall wellbeing and energy-aware operation [13]. 
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