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Abstract: This paper analyzes a vision-based control system for mobile robots that 

performs target tracking using image-based visual servoing. The system employs a 

distributed architecture in which vision processing is executed on a central workstation, 

while mobile robots act as sensor platforms and end-effectors, enabling rapid prototyping 

and the use of computationally demanding algorithms. Visual features are extracted either 

through classical methods or Deep Learning–based segmentation, while control is handled 

by an explicit software controller. Using a modern taxonomy, the system is classified as an 

Explicit Control Structure and Single-Target Tracking Visual Servoing scheme. Although 

Deep Learning components are incorporated, the approach does not constitute an end-to-

end solution, as the control law remains separate from the learning model. The paper 

discusses design trade-offs and outlines future directions toward end-to-end, AI-based 

visual control methods. 

1 Introduction 

 

Vision-based control can be described as mimicking natural systems in Robotics through the use 

of input information of a visual nature, coming from camera sensors, to control end-effectors towards a 

specific goal or task. End effectors can be industrial robotic arms or mobile robots. This approach stands in 

contrast to using different input data such as distance or location, which require other sensors (ultrasonic, 

infrared, GPS) that do not resemble biological eyes. 

Until recently, it can be confidently said that visual information requires processing before being 

used in a decision-making step within a control scheme. This processing relies on standard Computer Vision 

algorithms and procedures upon raw image data, captured by the sensors. Additional processing may be 

used for avoiding data loss [1], [2] or it can be achieved through data validation modules [3]  ̧[4]. 

In the 3rd edition of his book on Vision-based control, Peter Corke makes a statement in a sub-

chapter dedicated to image segmentation. Specifically, he describes that classic segmentation methods “are 

suitable for relatively simple scenes and have the advantage of requiring only modest amounts of 

computation. However, in recent times these techniques have been eclipsed by those based on deep 

learning, which is a powerful and practical solution to complex image segmentation problems.” [5]. 
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This statement serves as the motivation for the current paper. A discussion on the categories and 

classification of modern vision-based control is proposed, followed by an analysis of a visual control 

scheme proposed as part of a research project. The project had the goal of studying vision-based control by 

means of new systems, control scheme implementations and simulations of robot kinematic models, 

continuing the work from [6]. 

Within the research project mentioned a prototyping platform was developed, comprised of a central 

workstation and a group of mobile robots[7]. The system was inspired by educational projects such as 

experiments that can be carried remotely in a lab[8] or Augmented Reality applications with remote 

control[9]. 

2 A classification of modern vision-based control 

In their 2022 article Machkour, Ortiz-Arroyo and Durdevic propose a classification of Visual Servoing 

methods into several categories that better encompass the range of methods found in practice.[10] They 

split the methods into classic and new approaches, for the latter proposing a taxonomy: 

Classic Visual Servoing 

1. Image-based (IBVS) 

2. Position-based (PBVS) 

3. Hybrid 

Modern Visual Servoing 

1. Direct visual servoing 

2. End-to-end systems 

3. Fixed/ moving Target Tracking 

4. Single/ multiple Target Tracking 

5. Explicit/ implicit controller 

In classic Visual Servoing, image-based methods define an error function that operates on image 

coordinates for visual features. These features are extracted with various image segmentation algorithms. 

Controllers are defined by directly relating change in feature set s coordinates to velocities vector ν, which 

becomes the output. Such a relation is mediated by a feature sensitivity matrix Ls also known as interaction 

matrix or image Jacobian. 

Position-based methods introduce an additional step for pose estimation. This is achieved through various 

Computer Vision algorithms, such as Perspective-n-Point (PnP) which represents a foundational problem 

of determining a camera’s pose through mapping 3 tridimensional points to their projections in 2D. After 

the pose estimation step, the error function is defined in 3D space on target and camera pose, controllers 

relying on spatial math to modify the pose of the robot. 

Hybrid Visual Servoing methods have error functions which include both image features and 3D space 

coordinates. An example definition of such an error function e can be found in [11]. 

Among the new methods, direct Visual Servoing does not make use of features. It considers all the image 

data as the feature set. 

 𝑠̇ = 𝐋𝑠 ∙ 𝑣 (2.1) 

 𝑠(𝜉) = 𝐼𝜉  (2.2) 



The method is based on the principle of computing a similarity measure between images and adopting a 

suitable function becomes an important aspect of the implementation. Such a method, named photometric 

Visual Servoing is explained in-depth within [12]. Choosing a feature set, together with all the image 

processing involved for it, can be avoided by defining the feature set as the luminance of all image pixels. 

The error function can then be defined as a difference between current image and a target image: 

The paper provides further details regarding the computation of an interaction matrix based on the 

luminance I for all the image points. 

In end-to-end methods there are no controller components involved. Instead, the control law is embedded 

into Deep Learning models or learned through Machine Learning techniques. The error function can be 

defined as a mean error between the process value and model inference output (predictions).  

Given that target tracking is an idiomatic task for Vision-based control applications, the authors of [10] 

include several categories of Visual Servoing methods related to this task. Regarding the motion of the 

target, there are the Fixed Target Tracking Visual Servoing (FXTTVS) and the Mobile Target Tracking 

Visual Servoing (MBTTVS) categories. For a moving target its dynamics need to be estimated, therefore 

the feature set includes elements related to target dynamics. 

With regards to the number of targets involved, two specific categories were proposed: Single Target 

Tracking Visual Servoing (STTVS) and Multiple Target Tracking Visual Servoing (MTTVS). In STTVS 

there is only one target which belongs to a class, while MTTVS includes multiple targets all belonging to 

the same class. 

The final categories, explicit (ECS) or implicit controller Visual Servoing (ICS), denote whether the system 

contains a feedback control loop component. Classic Visual Servoing methods belong to the explicit 

category, as well as DL-based methods which have a controller module. In the case of implicit methods 

category, the control law is learned by means of embedding it inside a DL model. 

3 Architecture considerations for prototyping systems 

 

The system described in [13] implements vision-based control by means of defining features and 

extracting them from the image with a D.L.-based component. It achieves a target tracking task for a mobile 

robot. 

As described in [7] the system closes a remote control loop as it is distributed over mobile robot 

agents and a central workstation for carrying out Vision computations and algorithms. This allows for fast 

prototyping vision-based control schemes as it eliminates deployment steps onto the robots. The mobile 

robots act as information gatherers and are also end-effectors in the system, receiving remote commands. 

This structure also benefits from increased processing power and allows for implementing more demanding 

algorithms, while having an increased tolerance to un-optimized or naïve code. 

 𝑒 = 𝐈 − 𝐈∗ (2.3) 



 

Figure 1 System architecture diagram[7] 

As can be seen in Figure 1, the loop is closed over the network. This particular implementation 

makes use of two wireless TCP connections: one for sensor data flow towards the central workstation and 

one for remote control of the mobile robots. The data flow is implemented as a simple stream of information, 

while remote control relies on existing RPC solutions. 

 

Figure 2 Target visual features[14] 

The visual control scheme itself relies on features defined in a mathematical model of the system, 

which are extracted from the image (Figure 2). It is a classic Visual Servoing method and it is image-based 

as it operates on feature set coordinates. 

Considering the previously defined taxonomy, the system can be classified as belonging to the ECS 

category, as it contains an explicit software controller module. There are multiple versions of the scheme 

that were prototyped and studied: based on classic feature extraction as well as Deep Learning-based 

solutions. It is important to mention that in all cases, the controller component still exists as part of the 

system. 



The scheme can also be classified as STTVS, as it is specialized in achieving a target tracking task 

using the remote-controlled mobile robots group. There is only one target detected by the segmentation 

procedure, belonging to a single class of objects. 

Despite the fact that a version of the visual control scheme contains a Deep Learning component, 

it cannot be classified as an end-to-end system. The model is used only for image segmentation, feature 

extraction is still present in that specific version. The control law is not embedded into the Deep Learning 

component. 

The component makes use of the Transfer Learning property, which allows a pre-trained model to 

be used as the base for a specialized model, the specialization occurring in the final layers towards the 

output (Figure 3). This final layer acts as the regressor for bounding box coordinates, achieving target object 

detection. This idea is inspired from the paper by Komorowski et al. which detect similar circular-shaped 

targets, making use of a pyramidal architecture[15]. The FootAndBall model presented by the authors 

propagate features from a series of convolutional layers to a superior dense layer which acts as a regressor 

in a similar way to the model proposed by our visual control scheme. Such a model architecture 

implementation for a detector is discussed in several web resources[16], [17]. 

 

Figure 3 D.L. detector layers[13] 

Object detection represents a classic problem for Computer Vision and there are other well-established 

approaches to it: among state-of-the-art detectors are mentioned YOLO and SSD which are efficient and 

achieve the detection task in a single pass[17], [18].  

Re-stating the problem to fit an end-to-end system implies embedding the control law into the Deep 

Learning model. Therefore, the component is not isolated to an object detection sub-task, but rather its 

output changes to the velocities required to minimize the error function value (Figure 4). 

 

Figure 4 End-to-end component block diagram 



4 Closing remarks 

In the current state of technology, end-to-end solutions have a promising potential for accuracy at the cost 

of hardware resources. A benefit of segmentation approaches and explicit controllers lie in the possibility 

for simple and optimized implementations which can run on robotics hardware without the need for 

dedicated computational modules or specialized SoC. Such simple approaches rely on assumptions and 

have an increased risk of reduced accuracy when these assumptions are not met. 

The visual control scheme analysed by the authors of this paper has been classified according to a modern 

taxonomy into several overlapping categories, sketching a discussion on strengths and weaknesses for each 

design decisions regarding its core components. 

This paper paves the way for future implementations and a thorough comparison of modern vision-based 

control approaches compared to the classic methods employed. Future directions include a greater reliance 

on Deep Learning for embedding control laws and a shift towards Artificial Intelligence based methods. 
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