
19 19

1
9

.

Software Reliability Engineering

Software
Reliability Engineering

Florin Popențiu VLĂDICESCU

Course book

co
u
rs

e
 b

o
o
k

Florin Popențiu VLĂDICESCU

Professor Florin Popențiu Vlădicescu graduated in Electronics and
Telecommunications from University POLITEHNICA of Bucharest in
1974 and holds a PhD in Reliability in 1981. He has been Chairholder
of the UNESCO Chair in Information and Communication Engineering
at City University London since 1998 and also he has been appointed
Director of the “UNESCO Chair” Department at University of Oradea.
Professor Florin Popențiu Vlădicescu has published over 100 papers in
international journals and conference proceedings and is
co-author of three books.
He has worked for many years on problems associated with software
reliability and has been Co-Director of two NATO Research Projects,
involving collaboration with partner institutions throughout Europe.
Also he is on the advisory board of several international journals,
including “Reliability and Risk Analysis:
Theory & Applications” and “Microelectronics Reliability”,
and is a reviewer for “ACM Computing Reviews”.
He is an expert for the Seventh Framework Programme-FP7.
His Research ID is E-5787-2010. Also in 2009 he has been nominated
UNESCO Expert in the field of Higher Education, Research and Knowledge.
Professor Popențiu Vlădicescu is currently Visiting Professor
at the Paris Institute of Technology - "ParisTech" - which brings
together 24 of France's best engineering and business schools.
He also lectures at the Technical University of Denmark.
He was elected Fellow of the Academy of Romanian Scientists in
2008 and Director of the Doctoral School “Engineering sciences” –
November 2011.

F
L
O

R
IN

 P
O

P
E

N
Ț

IU
 V

L
Ă

D
IC

E
S

C
U

 S

o
ft

w
a
re

 R
e
li
a
b

il
it

y
 E

n
g

in
e
e
ri

n
g

Software Reliability

Florin POPENTIU

University Politehnica of Bucharest

ENSTA ParisTech

popentiu@imm.dtu.dk

Fl.Popentiu@city.ac.uk

Software Reliability - Course Objectives

• Measuring software reliability

• Generic approach and specific models

• Evaluating predictions

• Capabilities and limitations

• Reliability assessment in the life-cycle

• Data collection

• Unanswered questions

Software Reliability Course - Agenda

1. Motivation

2. Introduction to Software Engineering

3. Measuring Software Reliability

4. Software Reliability Techniques and Tools

5. Experiences in Software Reliability

6. Software Reliability Engineering Practice

7. Lessons Learned

8. Background Literature

1. Motivation

• Introduction

• Errors, faults and failures

• Faults and failures: examples

• Actual software disasters

• The relationship between faults and failures

• Case Study – Therac 25

• When are software faults introduced?

• What is reliability?

• What is dependability?

• Dependable systems

• Hancock’s Half Hour!

What is “Software”?

•An abstract digital definition of system behaviour.

•Made concrete by compilation and loading.

•Defines much of system internal state.

•Includes interfaces (H/W-s/W, HCI, etc.).

•Includes documentation.

•May be firmware, microcode, operating system,

application.

•System may consist of H/W, S/W, or both.

Why use software?

•Light

•Easily modified

•Supporting hardware very reliable

•Demand for “smart” systems

How Hard is Software ?

Software is so hard that –

• £1billion is spent annually in the UK on software

•Over half this is wasted!

“Waste” includes:

•Cost of overruns

•Cost of correcting errors

•Penalty due to not using quality assurance procedures

•“unnecessary” expenditure on maintenance.

What is reliability?

Two senses:

• General: The ability of a

system to perform a required

function under given

conditions for a specific time

interval.

• Precise: The probability that

a system will operate without

failure under given

conditions for a specific time

interval.

The “Software Crisis”

OVER due, OVER budget, UNDER quality

•Society is increasingly dependent on complex digital

systems

•They are delivered late

•They cost more than was planned

•They are not good enough

- don’t meet their functional requirements

- unreliable, unsafe, insecure, unusable, not

maintainable

In particular, they are “undependable”

• Software reliability is rarely of concern to most

people until something goes wrong.

• Physical system components deteriorate over time,

while software does not.

• However, unlike a human operator, software does not

adapt well to situations which were not anticipated by

its designers, and such failures can prove enormously

costly.

Does Software Reliability Make Sense?

• Developers, users and military organizations are often

concerned about the reliability of systems that include

software.

• Over the years, reliability engineers have developed

detailed and elaborated methods of estimating the

reliability of hardware systems based on an estimate

of the reliability of their components.

• Software can be viewed as one of those components,

and an estimate of the reliability of software is

considered essential to estimating the reliability of the

overall system.

Hardware/Software differences

•Hardware is manufactured

- Designed once

- Many imperfect copies

•Software is “all design”

- Design transformed into code

- Many perfect copies

•Every software product is a “prototype”

Hardware/Software maintenance

Hardware maintenance

- System “down” until repaired

- Corrective maintenance restores system to “good as

old”

- Design change difficult

- Requires movement of men and material

Software maintenance

- “Transient” failures

- Corrective maintenance improves system design

- Design change easy

- Requires movement of information

Errors, faults, and failures

• Error: Designer’s mistake

e.g. failure to distinguish signed and absolute value numbers in an algorithm

• Fault: Encoding of an error into software

e.g. ‘X:=Y’ is coded instead of ‘X:=ABS(Y)’

• Failure: Deviation of the software from its specified delivery or service
(incorrect output or timing of output)

e.g. nuclear reactor exhibits behaviour likely to be an earthquake hazard.

Error Fault Failure

can lead to can lead to

Failures of Complex Systems (1)

“Physical” failure:

•Hardware component breaks.

•Cause is physical (e.g., wear-out, overload,

corrosion).

•“fault” appears in system at that point in time.

•Fault may cause failures unless “masked” by

“redundancy”.

•System repaired by replacement of broken

component.

•System is thereby restored to its previous good

state.

Failures of Complex Systems (2)

Design failure:

• defect in design

• cause is intellectual (bad requirement, careless

design)

• fault is present in system, but “latent”

• may cause failure with some inputs or internal

states

• repair by changing design

• system is different from its previous “bad” state

System Failure

Attributes of failures, faults and changes

Failures and faults

•A failure corresponds to unexpected run-time

behaviour observed by a user of the software.

•A fault is a static software characteristic which causes

a failure to occur.

•Faults need not necessarily cause failures. They only

do so if the faulty part of the software is used.

•If a user does not notice a failure, is it a failure?

Remember most users don’t know the software

specification.

http://www.imm.dtu.dk/English/Teaching/IMM%20Courses.aspx?coursecode=02228

http://www.imm.dtu.dk/English/Teaching/IMM%20Courses.aspx?coursecode=02228

Failure classification

Failure class Description

Transient Occurs only with certain inputs

Permanent Occurs with all inputs

Recoverable System can recover without operator

intervention

Unrecoverable Operator intervention needed to

recover from failure

Non-corrupting Failure does not corrupt system state

or data

Corrupting Failure corrupts system state or data

Failure consequences

• Reliability measurements do NOT take the

consequences of failure into account.

• Transient faults may have no real.

consequences but other faults may cause data

loss or corruption and loss of system service.

•May be necessary to identify different failure

classes and use different measurements for

each of these.

The relationship between faults and failures

(MTTF = Mean Time To Failure)

Sample from 9 major software products, each with many
thousands of years logged use world-wide.

Ref: Adams E., Optimizing preventive service of software products”, IBM J Research &
Development.

Very rare faults

MTTF > 5000

years

Rare faults

1600 < MTTF < 5000 years
Fairly rare faults

500 < MTTF < 1600 years

Faults with 160 < MTTF < 500 years

Faults with

50<MTTF<160 years

Common faults: MTTF < 50 years

• Software faults persist even in
well-debugged programs.
Edward N. Adams of IBM
found that bugs that remained in
a system were primarily “5000-
year” bugs – that is, each of
them would produce a failure
only once in 5000 years (top).
Such faults make debugging an
exercise in diminishing returns:
in the test of a military
command-and-control system
(bottom), the time needed to
remove the bugs begins to
outpace by far the resulting
improvement in the estimated
reliability, measured in terms of
estimated achieved MTTF.

• For visual clarity, the graphs
have been plotted on different
time scales.

• Source: Littlewood B., Strigini
L., The Risks of Software,
Scientific American, Nov.,
1992, 62-75.

Diminishing returns

Faults and failures: examples

• Therac 25
Failure: man killed by huge overdose of therapeutic radiation.

Fault: improper echoing of keyboard commands on VDU.

• NASA probe to Venus
Failure: prove went off course and was lost.

Fault: in the navigational FORTRAN code the statement .

DO 3I=1.3 was written instead of DO 3I=1,3.

• A320
Failure: An A320 crashed in India killing 92 people.

Fault: ?????

(see the story of the Ariane Flight 501, 1996:
http://www.youtube.com/watch?v=IONcgYzVFlg)

http://www.youtube.com/watch?v=IONcgYzVFlg

http://www.imm.dtu.dk/English/Teaching/IMM%20Courses.aspx?coursecode=02228

Software disasters

• Therac 25

‾ Software controlled radiation therapy.

‾ Software interlock governed high/low beam strength.

‾ Interaction of operator error and software fault -> high strenth beam.
without shield in place

‾ Killed 2, injured others.

• Citibank (1989)

‾ Electronic funds transfer through CHAPS.

‾ Interaction of operator error and design fault -> wrong date supplied.

‾ Repeated previous day’s transfers.

‾ Money recovered within 2 days!

Case study: Therac 25

• Radiotherapy machine failure

- 2 deaths, several injuries

• 2 modes of operation

- X-ray: high-intensity beam strikes tungsten target

- electron: low-intensity beam with target retracted

- treatment programmed using monitor and keyboard

• The accidents

- high-intensity beam, with target retracted

- “Malfunction 54”

• The trigger

- use of to correct a typing error

Therac 25 Failure

• Location: East Texas Cancer Center

• Timing: 21 March 1986 (#treatment hours unknown)

• Mode: ‘Malfunction 54’on operator screen

• Effect: Beam strength too great by factor of 100

• Mechanism: Use of up arrow key corrupted internal

software variable

• Cause: Unintentional design fault

• Severity: Critical (loss of life)

• Cost: Financial loss in

litigation/investigation

You cannot predict what you cannot measure!

http://www.imm.dtu.dk/English/Teaching/IMM%20Courses.aspx?coursecode=02228

http://www.imm.dtu.dk/English/Teaching/IMM%20Courses.aspx?coursecode=02228

http://www.imm.dtu.dk/English/Teaching/IMM%20Courses.aspx?coursecode=02228

Why is Software So Bad?

It is essentially difficult:-

•Novel

•Complex

•Discontinuous

•“Invisible”

•Hard to predict

•Hard to measure

It is also NOT ENGINEERED

Novelty by design (1)

Novel designs give nasty surprises!

•“Traditional” artefacts “evolve” gradually:-

-bridges: standard designs “off the shelf”

-cars: most design features go back 100 years

-even so, disasters occur: Tacoma, Tay

•Software has been around for only 60 years:-

-few “standard” design

-frantic rate of change

Novelty by design (2)

Novel designs give nasty surprises!

•New problems generate new solutions

•Every software product is a “prototype”:-

-unique, even though many identical copies

exist

-each program is only developed ONCE

(unlike widgets: developed once, produced

in millions)

Complexity

The human mind cannot cope with complexity

•Software is the most complex thing ever made

•Difficult to visualise

•Unstructured

•10.000.000 lines of source is common

•Absorbs most intellectual effort in system

development

Discontinuous Behaviour

Software is discrete

•Billions of internal states

•Most of them can given rise to failure

•Impossible to test exhaustively

- too many paths

- too many internal states

- too many input cases

- non-deterministic behaviour

•When things go wrong, the go VERY wrong

The “Craft” Approach

Software has tended to be a cottage industry:-
•Produced by creative effort

- more like writing a novel than engineering

- written by geniuses for geniuses

- “How dare you criticise my creation?”

•Invisible

- “Why should you read my code?”

- “Of course its all right! I wrote it! I tested it!”

- “You’re crushing the butterfly’s wing of my creativity!”

•This is WRONG attitude for an engineer!

- Weinberg: “Ego – less programming”

- Professional maturity

- Even you can make mistakes!

What is “dependability”?

Defined as:

“The extent to which the user can justifiably
depend on the service delivered by a system.”

J-C. Laprie: Dependability: basic concepts and
terminology

Important concepts: “required service”, “user”,
“system”

“Umbrella” term: not measurable attributes

Different authors use different sets of attributes
(Laprie, BS5760)

Definitions of dependability attributes

“RAMURSES”

Attribute … … defined as ability of a system to …

Reliability: … deliver required service

Availability: … be in an “up” state

Maintainability: Corrective… be repaired to remove faults

Adaptive … be modified for new environment

Perfective … be enhanced to improve service

Usability: … provide ease of access for user

Recoverability: … resume service after failure

Safety: … be used without accident

Efficiency: … complete task within given resources

Security: … resist unauthorised interference

Dependable systems

We need depend on systems. They must be:

Reliable: Deliver the required service under given time.

Safe: Must not kill people.

Secure: Must not allow unauthorised access.

Usable: Must be “friendly”: easy to learn and use.

Maintainable: Must be quick to recover after failure, and easy to

repair so that they do not fail again.

Available: Must be ready for use a high proportion of time.

Extendable: Must be easy to enhance to perform new functions.

How to make software-based systems

more dependable

Fault avoidance: Good management

Disciplined process

Careful requirements capture & design

Fault removal: Design and code inspection

Static analysis

Testing

Fault tolerance: Defensive design: “belt & braces”

Diverse redundant modules

Manual back-up

Dependability

measurement:

Realistic trial

Collect data (failures, faults, operating time)

Analyse data to evaluate “RAMURSES”

http://www.imm.dtu.dk/English/Teaching/IMM%20Courses.aspx?coursecode=02228

IEC 61508 Standard

http://www.imm.dtu.dk/English/Teaching/IMM%20Courses.aspx?coursecode=02228

http://www.imm.dtu.dk/English/Teaching/IMM%20Courses.aspx?coursecode=02228

Hancock’s Half Hour

Tony Hancock: “But I’ve just

been throttled half to death by

a flamin’ python! Why won’t

the insurance company pay

out?”

Sid James: “Well, you see, they

only insured you against

accident, but the snake meant

it!”

Software Reliability Course - Agenda

1. Motivation

2. Introduction to Software Engineering

3. Measuring Software Reliability

4. Software Reliability Techniques and Tools

5. Experiences in Software Reliability

6. Software Reliability Engineering Practice

7. Lessons Learned

8. Background Literature

2. Introduction to Software Engineering

• The phases of a software project

• Types of software

• Achieving software reliability: diverse sources

of information

• Products, processes, and resources

• Achieving software reliability: diverse

approaches

What is “Software Engineering”

• Application of mathematical, scientific,

organisational principles

• Concept, design, implementation, maintenance

• Achieve adequate quality with given time and

resources

• Large projects

The Phases of a Software Project

• Enthusiasm

• Disillusionment

• Panic

• Collapse

• Search for the guilty

• Punishment of the innocent

• Rewards and honours for those not involved

Types of software

• Games

• Working machine programs

• Operating systems

• Commercial applications

• Process control

• Embedded military & nuclear

• Flight-critical (‘Fly-by-wire’, e.g. A330-340)

What is ‘quality’ in each case?

‘Quality is conformance to requirements’. Philip B. Crosby

‘Quality is free, but only to those who are willing to pay
heavily for it’ T. DeMarco and T. Lister , Peopleware : Productive Projects and
Teams, 2nd Ed. by Tom Demarco, Timothy R. Lister , ISBN: 0932633439

So what are the requirements?

‘Horses for courses!’

http://www.softwarequotes.com/showquotes.aspx?id=604&name=T.%20DeMarco%20and%20T.%20Lister

Software Development Phases

• Concept

• Software Requirements

• Top Level Design

• Detailed Design

• Code/implementation

• Unit/development Test

• System/verification/validation
Test

• Operational Test

• Operation

Software Development Overview

When are software faults introduced?

Requirements faults give most serious failures but …

… can we ensure against failures that are “deliberate”?

Requirements: Gripen: “control laws”, ICL (Fujitsu Service)

“usability problems”

System design: Therac: no fault-tolerance (H/W interlock)

Software

specification:

Mariner: missing “bar” in mathematical formula

Coding: Mercury orbiter: “dot for comma”

Compilation: Pascal compilers: -ve exponential, floating

point I/P

Maintenance: LAS(2): London Ambulance Service “memory

leak”

System Requirements Analysis

•Establish need and feasibility

-Overall functional requirements

-Dependability requirements

-Cost and schedule constraints

•Subsystem/component breakdown

-Identify system elements

-Define the process carried out by each

-Define interfaces

-Apportion dependability among elements

•Identify software elements

-Define software FRs and NFRs

-Initial statement of software requirements

-Develop software requirements specification

Reliability specification

•Reliability requirements are only rarely

expressed in a quantitative, verifiable way.

•To verify reliability metrics, an operational

profile must be specified as part of the test plan.

•Reliability is dynamic – reliability specifications

related to the source code are meaningless.

•No more than N faults/1000 lines

•This is only useful for a post-delivery process

analysis

Specification validation

• It is impossible to empirically validate very

high reliability specifications.

• No database corruption means PODOF of less

than 1 in 200 million.

• If a transaction takes 1 second, then simulating

one day’s transaction takes 3.5 days.

•It would take longer than the system’s lifetime

to test for reliability.

Steps to reliability specification

•For each sub-system, analyse the consequences

of possible system failures.

•From the system failure analysis, partition

failures into appropriate classes.

•For each failure class identified, set out the

reliability using an appropriate metric. Different

metrics may be used for different reliability

requirements.

Examples of a reliable specification

Failure

class

Example Reliability

metric

Permanent,

Non-corrupting

The system fails to operate with

any card which is input.

Software must be restarted to

correct failures.

ROCOF

1 occurrence/1000

days

Transient,

Non-corrupting

The magnetic stripe data cannot

be read on an undamaged card

which is input

PODOF

1 in 1000 transactions

Transient,

corrupting

A pattern of transactions across

the network causes database

corruption

Unquantifiable!

Should never happen

in the lifetime of the

system

Reliability and formal methods (1)

•The use of formal methods of development may

lead to more reliable systems as it can be proved

that the system conforms to its specification.

•The development of a formal specification

forces a detailed analysis of the system which

discovers anomalies and omissions in the

specification.

•However, formal methods may not actually

improve reliability.

Reliability and formal methods (2)

•The specification may not reflect the real

requirements of system users.

•A formal specification may hide problems

because users don’t understand it.

•Program proofs usually contain errors.

•The proof may make assumptions about the

system’s environment and use which are incorrect.

IV & V

• Independent Verification and Validation

- Two contractors: developer and monitor

- Commercially independent

- Monitor has no vested interest in delivery

- Access points contractually defined

• Advantages

- Checker is well-motivated

- Diversity of approach

• Disadvantages

- Expensive (up to 60% on contract)

VALIDATION AND VERIFICATION

Verification: Are we building the product right?

Validation: Are we building the right product?

Verification & Validation

The System may have been verified;

Have we built the system “correctly”?

But inadequately validated?

Have we built the “correct” system?

This is often satirised by customer’s remark:

It’s just what I asked for, but not what I want!

Testing Strategies

•Dynamic testing Vs Static testing (static analysis)
-in dynamic testing, the test data is executed on real machine

•Black Box Testing Vs White Box Testing
-in black box testing, test cases are derived from the

specification or requirements without reference to the code

itself or its structure

-in white box testing, test data are derived from the internal

program structure

•Testing Random
-using test cases in which all the test data are random

Testing has many purposes…

•Reliability testing – measuring reliability

•Acceptance testing – fit for delivery?

•Unit testing – modules working on isolation?

•Integration testing – modules working as a

system?

•Etc…

… but only one goal

To discover faults

•A successful test is one which establishes

the presence of one or more faults in the

software being tested.

Remember …

… testing aims to find faults.

… testing is finished when the acceptance criteria

have been met – not when the time runs out.

… the importance of test specification and

planning.

FAGAN INSPECTION
M.E. Fagan, IBM

-Hardware inspection methods applied to software

-In use since early 70’s

-Shown to be effective

-Larger award to originator

Highly formalised

-Formal committee

-Two readers, independent of author

-Record defects, don’t argue about repairs

-Declined preparation time

-Defined rate of reading

-Defined pass criteria

Generates statistics
-Defects found in each module

-Defects found per K lines

-Defects found at each inspection

-Estimate efficiency of detection

-Estimate remaining defects/KLOC

FAGAN INSPECTION TEAM

Testing after development

•Acceptance testing

- Completed system Vs requirements of real user

•Alpha test

- User and developer test system using real data

•Beta test

- Release of product to a section of the market for real use

•Installation testing

- Tests to check on the installation process

•During use

-Using spare capacity to do additional automatic testing

SOFTWARE COST AND SCHEDULE

Cost, Schedule, Quality

Managing any project is a juggling act:

Deliver adequate quality, on time, within budget

Cost -Resources are always finite

-Plant, raw materials, effort

-Job must be done within budget

Schedule -Time is limited

-Delivery dates, market opportunities

-Job must be done by deadline

Quality -Nothing is ever perfect

-Reliability, functionality, shininess

-Product must be good enough (“fit for

purpose”)

SEI – Capability Maturity Model

• CMM was developed by Software Engineering Institute and it
is a strategy to improve software quality by improving the
process by which software is developed. The five levels of
CMM and their characteristics are given below:

Maturity Level Characterization

Maturity Level 1 (Initial) Adhoc process: Cost, schedule and quality
are unpredictable

Maturity Level 2 (Repeatable) Basic Project Management: Planning and
tracking can be repeated

Maturity Level 3 (Defined) Process Definition: The process is stable
and repeatable

Maturity Level 4 (Managed) Process measurement: The process is
measured and operates within measured

limits

Maturity Level 5 (Optimizing) Process Control: The focus is on
continuous process improvement

Software Quality Models

ISO 9126: Software Product Evaluation (1)

Quality characteristics and guidelines for their use

The chosen characteristics are:

Functionality

Reliability

Usability

Efficiency

Maintainability

Portability

Each is defined as ‘a set of attributes that bear on …’.

e.g. Reliability is ‘a set of attributes that bear on the capability of

software to maintain its level of performance under stated

conditions for a stated period of time.’

ISO 9126: Software Product Evaluation (2)

The Cleanroom Approach (1)

• The Cleanroom process was originally
developed by Harlan Mills from IBM
Fellow Department.

• The name Cleanroom was chosen to evoke
the cleanrooms used in the electronics
industry to prevent the introduction of
defects during the fabrication of
semiconductors.

The Cleanroom Approach (2)

• The Cleanroom software engineering
process is a software development
process intended to produce software
with a certifiable level of reliability.

• The focus of the Cleanroom process
is on defect prevention, rather than
defect removal.

The Cleanroom Approach (3)

The first two principles of the Cleanroom process

are:

- Software development based on formal

methods

- Incremental implementation under statistical

quality control: The quality of each

increment is measured against pre-

established standards to verify that the

development process is proceeding

acceptably.

The Cleanroom Approach (4)

The third principle of the Cleanroom process is:

- Statistically sound testing: Based on the

formal specification, a representative subset

of software input/output trajectories is

selected and tested. This sample is then

statistically analyzed to produce an estimate

of the reliability of the software, and a level

of confidence in that estimate.

Software Engineering Assessment

“You can’t control what you can’t measure.”

Tom De Marco: “Controlling Software Projects”

“If You Can't Measure It, You Can't Manage It”

Peter Drucker !

Software Reliability Engineering

• A reliability objective
is the specification of
the reliability goal of
a product from the
customer viewpoint.

• The operational profile
is a set of disjoint
alternatives of system
operational scenarios
and their associated
probabilities of
occurrence.

• Reliability modeling is
an essential element of
the reliability
estimation process.

Developing an operational profile

1. Find the customer profile

2. Establish the user profile

3. Define the system-mode

profile

4. Determine the functional

profile

5. Determine the operational

profile itself

Customer
 Profile

User Profile

System-mode
 Profile

Functional Profile
•# Functions , Environ. Variables
•Initial List , Final Function List
•Explict/Imp. , Occurrence Probs.

• Divide Exec. into runs , Partition input space
• Identify input space , Occurrence Probabilities

Operational Profile

Test Selection

Developing an operational profile for a system

involves one or more of the following five

steps:

Statistical testing

•Testing software for reliability rather than fault

detection.

•Test data selection should follow the predicted usage

profile for the software.

•Measuring the number of errors allows the reliability

of the software to be predicted.

•An acceptable level of reliability should be specified

and the software tested and amended until that level

of reliability is reached.

Statistical testing procedure

•Determine operational profile of the

software.

•Generate a set of data corresponding to this

profile.

•Apply tests, measuring amount of execution

time between each failure.

•After a statistically valid number of tests

have been executed, reliability can be

measured.

Statistical testing difficulties

•Uncertainty in the operational profile

•This is a particular problem for new systems with no

operational history. Less of a problem for replacement systems.

•High costs of generating the operational profile

•Costs are very dependent on what usage information is

collected by the organisation which requires the profile .

•Statistical uncertainty when high reliability is

specified
•Difficult to estimate level of confidence in operational profile

•Usage pattern of software may change with time.

Operational profile generation

• Should be generated automatically whenever

possible.

• Automatic profile generation is difficult for

interactive systems.

• May be straightforward for ‘normal’ input but

it is difficult to predict ‘unlikely’ inputs and to

create test data for them.

Achieving Software Reliability: diverse sources

of information

Resources Processes Products

PEOPLE FORMAL DEVELOPMENT DOCUMENTS

TOOLS DESIGN TEST PLANS

TECHNIQUES TEST PROOFS

STANDARDS REVIEW MEETINGS MEETING MINUTES

QUALITY PLANS … …

…

High

quality

softwarePersonnel experience/skill

Quality of tools/techniques

…

Test results …

Verification arguments

Use of certain techniques

…

Structural information

Measures

…

Products, Processes, and Resources

• Resource: an item which is input to a process

- people, hardware, software, etc.

• Process: a software related activity or event

- testing, designing, coding,

• Product: an object which results from a process

- test plane, specification and design documents, source and
object code, minutes of meetings, etc.

Resources Processes
Products

Achieving software reliability:

diverse approaches

High

quality

software

Fault

avoidance
Fault

removal

Fault

tolerance

Formal methods

Object oriented design

Structured

design/analysis

Structured programming

…

N-version programming

Recovery blocks

Error masking

…

Black box testing

White box testing

…

Reviews/inspections

Statistical QC

Measurement

…

WHY USE FAULT TOLERANCE

-Avoidance and Removal never perfect

-Residual faults always possible

-Must prevent residual faults causing failure

-Only way to achieve ultra-reliability(?)

SOFTWARE FAULT TOLERANCE

PROBLEMS

http://www.imm.dtu.dk/English/Teaching/IMM%20Courses.aspx?coursecode=02228

http://www.imm.dtu.dk/English/Teaching/IMM%20Courses.aspx?coursecode=02228

http://www.imm.dtu.dk/English/Teaching/IMM%20Courses.aspx?coursecode=02228

http://www.imm.dtu.dk/English/Teaching/IMM%20Courses.aspx?coursecode=02228

http://www.imm.dtu.dk/English/Teaching/IMM%20Courses.aspx?coursecode=02228

Software Reliability Course - Agenda

1. Motivation

2. Introduction to Software Engineering

3. Measuring Software Reliability

4. Software Reliability Techniques and Tools

5. Experiences in Software Reliability

6. Software Reliability Engineering Practice

7. Lessons Learned

8. Background Literature

3. Measuring Software Reliability

• Measures of software reliability

• Software measurement

• Software engineering assessment

• Definition of software reliability

• Software reliability: measurement

• Predictive measures

• Reliability models

Key points (1)

• Reliability is usually the most important

dynamic software characteristic.

• Professionals should aim to produce reliable

software.

• Reliability depends on the pattern of usage of

the software. Faulty software can be reliable.

• Reliability requirements should be defined

quantitatively whenever possible.

Key points (2)

• There are many different reliability metrics.

The metric chosen should reflect the type of

system and the application domain.

• Statistical testing is used for reliability

assessments. Depends on using a test data set

which reflect the use of the software.

• Reliability growth models may be used to

predict when a required level of reliability will

be achieved.

The predictor distribution of time to

failure (TTF).

Software reliability growth models yield predictor

distribution of time to failure (TTF). From this we can

derive:

- Probability of mission success

- Median TTF (sometimes Mean)

- Hazard rate (ROCOF)

- Expected no. of faults detected

- Expected further execution time required to achieve

the above.

Software Measurement

• Perfection cannot be guaranteed

- Proof is fallible

- “Good practice” may not be good enough

- “No faults found” does not mean “No faults

left”

• Must measure quality

- measure dependability dynamically

- under realistic conditions

- collect data

Definition of software reliability

• The reliability of a software item is the probability
that the system of which it is part will operate, without
failure due to the activation of a fault in the software,
under given conditions for a given time interval.

- Probability: Subjective degree of belief

- Failure: Departure of system behaviour from what is
required

- Fault: Design defect due to human error

- Conditions: Defines “mode of use” of software

- Time: “Execution time” (measure of software use)

Software reliability measurement

• Software reliability measurement is always a

prediction problem: how is the software likely to

behave from now given its past record of failures.

• We can predict future failures well if we have

observed past failures frequently.

• This does not help us with high reliability

requirements. How reliable is a system which has not

failed for 10,000 hours of use?

• The system requirement for the A330 is MTTF of 109

flying hours. The software requirement is higher. How

can we certify this system?

Prediction versus estimation (1)

• The major difference between software
reliability prediction and software reliability
estimation is that predictions are performed
based on historical data while estimations are
based on collected data.

• Predictions, by their nature, will almost
certainly be less accurate than estimations.
However, they are useful for improving the
software reliability during the development
process.

Prediction versus estimation (2)

• If the organization waits until collected data is

available (normally during testing), it will

generally be too late to make substantial

improvements in software reliability.

• The predictions should be performed

iteratively during each phase of the life cycle

and as collected data becomes available the

predictions should be refined to represent the

software product at hand.

Predictive measures

• Predictive measures invariably require a

prediction system.

• A prediction system consists of a mathematical

model, together with a set of procedures for

determining unknown parameters, and

interpreting results. The procedures are

stochastic.

The model alone is insufficient; using the

same model will yield different results if

we use different prediction procedures.

Reliability Measurement Goal

• Reliability measurement is a set of mathematical

techniques that can be used to estimate and predict the

reliability behavior of software during its development

and operation.

• The primary goal of software reliability modeling is to

answer the following question:

“Given a system, what is the probability that it will

fail in a given time interval, or, what is the

expected duration between successive failures?”

Software reliability predictions

• Software reliability prediction is performed at each phase of
the software development process up to software system test.

• Software reliability predictions are made during the software
development phases that precede software system test, and are
available in time to feed back into the software development
process. The predictions are based on measurable
characteristics of the software development process and the
products produced by that process.

Probabilistic modelling

• Why are statistical methods necessary?
• Why reliability?
• What is the nature of the failure process?
• … of the debugging process?
• How can we measure, predict?

• Why do we want to measure it anyway? Some potential benefits:
- some software is safety-critical (A330-340, Sizewell B)
- all software needs to be sufficiently reliable (warranties?
support costs? etc)
- methodology for a rational choice between SE technologies (eg
are formal methods the most cost-effective way of achieving R?)
- management tool for scheduling and monitoring software
development (is project on time?)

Finding errors: does it increase or decrease your

confidence in the software reliability?

“The number of errors detected by the verification process attest
to the effectiveness of the software development principles ...
Significantly enhance the probability of achieving essentially
error-free software.”

(Westinghouse commenting on their work on the Sizewell B
nuclear protection system.)

Refined data for software reliability models

• Failure time data

- List of interfailure times

* execution time between activation of

successive new faults

• Failure count data

- Count of new faults activated, and total

execution time accumulated, in successive

calendar periods

Why probability?

• A computer is a deterministic machine – why don’t we know when it will fail
next?

• There is intrinsic uncertainty
- about the sequence of inputs it will receive
- about where faults lie
- about the effect of attempts to remove faults

• We need probability to describe such uncertainty

Uncertainty Modelling

Modelling type 1
uncertainty is easiest.
Seems plausible to
assume IF encountered
purely randomly:
• Time to failure is

exponential
F(t) = Pr (T<t) = 1-e-t

f(t) = F’(t) = e-t

R(t) = e-t

How to model type 2
uncertainty: the way in
which the value of 
changes as debugging
proceeds.

Types of uncertainty

There is intrinsic uncertainty about future failure
behaviour because of:

1. Uncertainty about the operational environment:
even if we knew IF we would not know when it
would be encountered next.

2. Uncertainty about the effect of fault-removal:
- we never know whether a fix is successful
- even if it is successful, we do not know how
much it improves overall reliability.

Models must be judged by their ability to capture both
sources of uncertainty

Frequentist for 1, but not for 2?

A conceptual model of the software failure process

• In summary:

- debugging creates a sequence of programs

p(1), p(2), …

- there is a sequence of failure subsets IF(1),

IF(2), …

- these have ‘sizes’ represented by random

variables (1), (2), …

- distribution of Ti is exponential with rate (i).

Software reliability metrics

Metric Definition Formula
Reliability

R(t)

The probability that a given piece

of software will execute without

failure in a given environment for a

given period of time

Mean time to failure

(MTTF)

The time which is expected to

elapse between the current time and

the next failure

Median m This term implies the point of

statistical distribution that a given

quantity is equally likely to fall

either side of

F(m) = 1/2

Rate of occurrence of

failures ROCOF (t)

The current rate at which failures

are occurring (t)=f(t)/R(t)

() ()

 =1 ()

 =1 ()

R t P T t

F t

P T t

 



 

0

()MTTF tf t dt



 

Note: F(t) is called distribution function of the random variable T;

its probability density function is f(t)=F’(t)

Reliability metrics

•Mean time to failure

•Measure of the time between observed failures

•MTTF of 500 means that the time between failures is 500

time units

•Relevant for system with long transactions e.g. CAD

systems

•Availability

•Measure of how likely the system is available for use. Takes

repair/restart time into account

•Availability of 0.998 means software is available for 998

out of 1000 time units

•Relevant for continuously running systems e.g. telephone

switching systems

Software reliability

•Cannot be defined objectively

•Reliability measurements which are quoted out of context are not

meaningful

•Requires operational profile for its definitions

•Requires operational profile defines the expected pattern of

software usage

•Must consider fault consequences

•Not all faults are equally serious. System is perceived as

more unreliable if there are more serious faults.

Reliability economics

•Because of very high costs of reliability

achievement, it may be more cost effective to

accept unreliability and pay for failure cost.

•However, this depends on social and political

factors. A reputation for unreliable products may

lose future business.

•Depends on system type – for business systems

in particular, modest reliability may be adequate.

Reliability measurement

•Measure the number of system failure for a given

number of system inputs

•Used to compute POFOD

•Measure the time (or number of transactions) between

system failures

•Used to compute ROCOF and MTTF

•Measure the time to restart after failure

•Used to compute AVAIL

Reliability growth (faults found, failure rate)

Reliability growth (failure rate)

Random-step reliability growth

Bathtub curve

Reliability prediction

Software failure rate - example

http://www.ece.cmu.edu/~koopman/des_s99/sw_reliability/

Reliability improvement

• Reliability is improved when software faults
which occur in the most frequently used parts
of the software are removed.

• Removing x% of software faults will not
necessarily lead to an x% reliability
improvement.

• In a study, removing 60% of software defects
actually led to a 3% reliability improvement.

• Removing faults with serious consequences is
the most important objective.

Some parametric software reliability

models

! Remember that the problem is
one of prediction. This entails
the following triad:

1. The model itself, which gives a
complete probability
specification of the process (eg
the joint distribution of {Ti},
with unknown parameters, say )

2. An inference procedure for the
unknown parameters of 1 based
on realisations (data) t1, t2, …, tn

3. A prediction procedure which
combines 1 and 2 to make
predictions about future
behaviour

Notice that:

• Disaster can strike at

any (or all) of these

stages!

• A “good” model seems

necessary for good

prediction, but is not

sufficient

• All models are “wrong”

(but some are more

wrong than others!)

• Various solutions to 2,

eg ML estimation, eg

Bayesian posterior

distribution

• ditto for 3, eg

substitution of ML ests.,

eg Bayesian predictive

Distributions.

Jelinski-Moranda [JM] model (1)

This assumes:
 t1, t2, t3 ,… are independent random

variables
 Type 1 uncertainty: ti is

exponentially distributed, parameter
i

 Type 2 uncertainty: i=(N-i+1),
where N is the initial number of
faults (finite) and  is contribution
to overall failure rate of each fault.

 No fault introduction while
correcting detected faults: each
activated fault is corrected before
new executions

 Inference by ML, prediction via
‘plug-in’ rule.

 R(ti)=exp(-iti) is the reliability
function

Jelinski-Moranda [JM] model (2)

Jelinski-Moranda [JM] model (3)

Jelinski-Moranda [JM] model (4)

Jelinski-Moranda [JM] model (5)

Why is JM always optimistic ? (1)

Why is JM always optimistic ? (2)

Why is JM always optimistic ? (3)

Criticisms of [JM] model

• Foundational assumptions unrealistic: true fault
rates differ by orders of magnitude.

• Parameter estimates of N (by ML) have poor
properties:

- often seriously underestimate N (even N! –
factorial!)

- sometimes goes to infinite (essentially) when no
evidence of reliability growth in the data)

• Shall show reliability predictions are poor:
usually grossly “optimistic”.

Musa model [M]

• Assumptions similar to the Jelinski-Moranda
model.

• Parameters definition: M0 = number of faults in the
software; N0 = number of failures; B = fault
reduction factor: number of faults / number of
failures; C = compression factor (execution time in
operation / in test);  = fault manifestation rate.

• (i) = B C  (N0-i+1)

• N(t) = N0[1 - exp (-B C  t)] = number of failures
observed at t (execution time)

Littlewood [L] Model

• The main hypotheses are the following:

- At a failure, the fault is removed with certainty

- Faults manifest themselves at times that are independently

exponentially distributed

- The rates of these faults come from (, ) distribution

• Notations and relations:

- N is the initial number of faults

- i represents the (random variable) rate associated with fault

i (in arbitrary labelling).

- i = 1 + 2 + … + N-i+1 1

1

(1)
ROCOF is ()

i

j

j

N i
t

t t










 


 

[L] - LS Estimates

2

1

1

(, ,) .
(1) 1

n
i

i

i

t
S N X

N i


 






 
  

   


1

2
1 1

2

1 1

2 3
1 1

2

1 1

2 3
1 1

,
(1) 1 [(1) 1]

() ()
,

[(1) 1] [(1) 1]

(1)() (1)()
.

[(1) 1] [(1) 1]

n n
i i

i i

n n
i i i

i i

n n
i i i

i i

X t

N i N i

X t t

N i N i

X N i t N i t

N i N i



 

 

 

 

 



 

 

 

 

 

 


     

  


     

      


     

 

 

 

The LSE are those N, ,  chosen to minimize

The system of equations to be solved in order to find
LS estimates is:

Littlewood-Verrall [LV] Model

• Stochastic relationship between the successive failure
rates. During correction it is possible to remove a fault
or to introduce a new one.

• Randomness of inputs: f(ti| i) = i exp(- iti), the
probability density function for i is (, (i)), where
(i) captures the programming difficulty and the
programmer skills. Usually, (i) = 1+2 i.

• Parameters: , 1, 2

• Relations:

i(t) = /(t+(i)),

MTTFi = (i)/(-1).

[LV] – LS estimates

The LSE’s are obtained by the minimization of:

In the case of linear assumptions for (i), the
following system of equations is necessary to be
solved:

 
2

1 2

1

(, ,) { } .
n

i i

i

S X E X  


 

2

1

1

1 2

11

2

2

11

12

()

1 0,

()

(1)
0,

1 2(1)

(1)
0.

2(1) 1

n

i

n

i

i

n

i

i

n

n
i

i

i

i
S

X i

n n nS
X

i
n nS

X i








 

  




  












 
    






   

  



    
  












Keiller-Littlewood [KL]

[KL] is similar to [LV], except that reliability growth is

induced via the shape parameter of gamma distribution for the

rates:

Predictions of the unknown parameters can be obtained

by Maximum Likelihood approach.

The Poisson model (time related)

• The main hypotheses are the following:

1. N(0) = 0

2. The occurrence of an fault is independent of

previous faults; the future is independent of the

past

3. Not more than one fault can occur in the time

interval (t, t+dt); simultaneous events are

‘impossible’

4. The rate of occurrence of failures (ROCOF) is

0

[1 event in (,)]
lim ()
dt

P t t dt
t

dt







The NHPP distribution

• The occurrence of faults are described by the

non-homogeneous (NHPP) distribution:

where m(t) is the mean (expected) number of

faults occurring in the interval (0, t):

()()
[()]

!

n
m tm t

P N t n e
n

 

0

() ()

t

m t s ds 

Goel and Okumoto [GO]

• GO model is a NHPP
variant of JM model.

• ROCOF is

(t) =  exp(-t),

where t is total elapsed time
since debugging began,  is
the final number of faults
that can be detected by the
testing process, and  is a
constant of proportionality,
can be interpreted as the
failure occurrence rate per
fault.

• Prediction involves ML
estimation of  and , then
substitution.

Goel-Okumoto [GO] – Assumptions (1)

•The software is operated in a similar manner

as the anticipated operational usage.

•The number of errors (f1, f2, …, fm) detected in

each of the respective time intervals (0, t1), (t1,

t2), …(tm-1, tm) are independent for any finite

collection of increasing sequence of times.

•Every error has the same chance of being

detected and is of the same severity as any

other error.

Goel-Okumoto [GO] – Assumptions(2)

•The cumulative number of errors detected at any

time t, N(t), follows a Poisson distribution with mean

m(t). The mean m(t) is such that the expected number

of error occurrences for any time (t, t+t) is

proportional to the expected number of undetected

errors at time t.

•The expected cumulative number of errors function

m(t) is assumed to be a bounded, nondecreasing

function of t with m(t)=0, t=0; m(t) = a, t goes to

infinity: m(t)=a(1-exp(-bt)), b is a constant of

proportionality.

[GO] – ML estimates

Let fi=N(ti)-N(ti-1), Pr{N(t)=n}=m(t)nexp(-m(t))/n!. The likelihood

function is:

1 1
1 2

1

[() ()] exp{ () ()}
(, ,...,)

!

ifm
i i i i

m

i i

m t m t m t m t
L f f f

f

 



 


The MLEs are the solutions of a system based on the following

relations:

1ln
0 (1),m

m

i
bti

f
L

e
a a


   





1

1

1

1

ln
0 .

i i

m

i i

bt btm
bti i i

mbt bt
i

f t e t eL
at e

b e e





 


 



  

 


NHPP – S Shaped Model

• Failure intensity:

(t) = a b2 t exp(-bt)

• Parameters to be estimated: a, b

• Cumulative number of failures:

M(t)=a[1-(1+bt)exp(-bt)]

Software Reliability Course - Agenda

1. Motivation

2. Introduction to Software Engineering

3. Measuring Software Reliability

4. Software Reliability Techniques and Tools

5. Experiences in Software Reliability

6. Software Reliability Engineering Practice

7. Lessons Learnt

8. Background Literature

4. Software Reliability Techniques and Tools

• Kolmogorov-Smirnov (KS) Test

• The U-plot

• The Y-plot

• The Prequential Likelihood Ratio

• The Laplace test, Running Average, TTT,
MIL HD Test, Noise

• Recalibration

• Combination of predictions

Kolmogorov-Smirnov (KS) Statistics

• Uses the absolute vertical distance between two
CDFs to measure goodness of fit.

• Depends on the fact that:

where F0 is a known, continuous CDF, and

is the sample CDF, is distribution free.

(CDF – Cumulative Distribution Function)

• Dn is independent on

   
0

ˆsupn n
x

D x xFF
 

 

ˆ
nF

ˆ
nF

Critical

Values

for KS-

test:

If Dn is less than

the established

criteria, the

model fits the

data

adequately.

The u-plot (1)

The “u-plot” can be used to assess the

predictive quality of a model

• Given a predictor, , that estimates the

probability that the time to the next failure is

less than t. Consider the sequence

where each ui is a probability integral

transform of the observed ti using the

previously calculated predictor based upon

t1, t2, …, ti-1.

ˆ ()iF t

ˆ ()i i iu F t

ˆ
iF

The u-plot (2)

• If each were identical to the true Fi

then the ui would be realizations of

independent random variables with a

uniform distribution in [0,1].

• The simplest question to answer is

whether their distribution is close to U

by plotting their sample cdf: we call this

the u-plot.

ˆ
iF

How to draw a u-plot

Y-plot

The y-Plot for the LV and JM models

(Littlewood, 1981)

Detecting consistent ‘bias’ and inappropriate

‘noisiness’ in a prediction system (1)

Detecting consistent ‘bias’ and inappropriate

‘noisiness’ in a prediction system (2)

Prequential Likelihood Ratio

• The pdf for for Ti is based on observations t1, t2, …, ti-1.

• For one-step ahead predictions of Tj+1, Tj+2, …, Tj+n , the
prequential likelihood is:

• Two prediction systems, A and B, can be evaluated by
computing the prequential likelihood ratio:

• If PLRn approaches infinity as n approaches infinity, B is
discarded in favor of A.

1

ˆ ()
j n

n i

i j

PL f t


 















nj

ji

i
B

i

nj

ji

i
A

i

n

tf

tf

PLR

1

1

)(ˆ

)(ˆ

ˆ ()iF t
ˆ ˆ() () /i if t dF t dt

Using PLR as a device for comparing two

prediction systems, A and B

Reliability trend analysis – Laplace test

Laplace test - Interpretation

This test analyses the trend of the failures. One can
extract two types of information from such a graph :
local and global changes.
When the values are positive (resp. negative), the
reliability is globally increasing (resp. decreasing).
On the other side, when the values are increasing
(resp. decreasing), we have local variations of the
reliability.

• If U is approximately equal to zero, it indicates a lack
of trend,

• If U is greater than zero, the TBFs are decreasing,

• If U is less than zero, the TBFs are increasing.

General trend – Local trend

TTT plot – Total Time on Test

•The TTT plot is basically a

scaled version of the graph

consisting of the points (i, Ti).

•Is defined as a plot of the

points (i/n, Ti/Tn), for i=1, 2,

…, n.

•A necessary but not sufficient

condition for this notion of

reliability growth is that the

graph of the TTT plot should

be below the diagonal.
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

TTT Plot Trend Plot - casre_S1_tbf.xls

Scaled number of failures

S
c
a

le
d

 T
o

ta
l
T

im
e

 o
f
T

e
s
t

The MIL-HDBK-189 Test (1)

The MIL-HDBK-189 trend test is a conditional statistical

test based on the power-law process:

where a and b are the model parameters which are positive.

If b<1 then (t) decreases, meaning that the failures tend to

occur less frequently (and the system shows reliability

growth).

If b>1, then the system shows reliability decrease. When

b=1 the homogeneous Poisson process case is obtained.

1

()

b
b t

t
a a





 
  

 

The MIL-HDBK-189 Test (2)

Considering the event {Tn = tn}, the MLE of b of a failure

truncated power-law process is given by

Under the null hypothesis of b=1 it follows that 2n/b

2(2(n-1)). If the alternative hypothesis is two-sided,

then the null hypothesis is rejected if

or

where denotes the -percentile of the chi-squared

distribution with  degrees of freedom. For large values

of the null hypothesis is rejected in favor of reliability

growth.

1

1

log(/)
n

n i

i

n
b

t T








2

1 / 2

2

(2(1))

n
b

n 




2

/ 2

2
,

(2(1))

n
b

n




2 () 

Model noise

Recalibrating Software Reliability Models

This method was introduced by Brocklehurst, Chan, Littlewood

& Snell (NASA-CR-166407), and can be summarized as

follows.

The relation between true distribution Fi(t) of the random

variable Ti, and the predicted one, , can be represented

through a relation function Gi as Fi(t) = Gi(), where Gi is

only slowly changing function with i. Since Gi is not known, it

will be approximated with an estimate G* which will lead to a

new prediction:

This technique recalibrates the raw model output related

to the accuracy of past predictions.

()iF t

()iF t

* *ˆ () (())ii iF t G F t

()iF t

Combination of predictions

• Our previous recommendation was: ‘pick the model

which had performed best in the past, and use it for

the next prediction’.

• This seems unduly ‘rejecting’ of models which are

only slightly inferior to ‘the best’.

• Why not combine predictions from different models

in some optimal way? cf pooling of ‘expert opinion’.

• For two candidate models, A and B, could take

as a ‘meta-predictor’; similarly for more than two.

How should the weights be selected ‘optimally’?

• For a prediction at stage i, i.e. of ti, let {wk} take

values that maximise the PL of the combined

predictor over previous predictions

in the case of two prediction systems.

• This is computationally intensive, but seems to

work quite well.

How well do these work?

• Sometimes dramatic disagreement between model
predictions on the same data source.

• No universally accurate model.

• No way of selecting a model a priori and being
confident that it will be accurate on a particular data
source.

• Remember we have a prediction triad: in principle we
could separately examine models and inference
procedures.

• In fact this is too difficult: we are forced to examine
directly the accuracy of the different available models
on each data source and somehow decide which, if
any, is giving accurate results.

Reliability models in practice - examples

Data set: Sys1

Optimistic/pessimistic

•If u-plot is everywhere above the line of unit slope the

predictions are ‘too optimistic’; if they are everywhere

below the line, ‘too pessimistic’.

•Here JM is far too optimistic, which confirms suspicion

from median plot; LV is slightly too pessimistic.

•This poor u-plot performance for JM probably explains

the poor PLR performance versus LM, LV.

•The median plot, and PLR, seem to show that there is

little to choose between the three in the early stages, but

u-plot aggregates over the whole sequence of

predictions.

Summary

• These models seem to perform almost as well as the
best parametric models for most data sets.

• They seem robust: whilst the performance of the
parametric models varies considerably from one data
set to another, these seem fairly consistent.

• In most cases the best performing model is usually a
parametric one.

• Since we can select the best model via analysis of
predictive accuracy, it is still best to be eclectic in
model choice and ‘let the data decide’.

• Some of these models are very computationally
intensive (but who cares?!).

‘Prediction is very difficult, especially of the future’

(Niels Bohr)

Software Reliability Course - Agenda

1. Motivation

2. Introduction to Software Engineering

3. Measuring Software Reliability

4. Software Reliability Techniques and Tools

5. Experiences in Software Reliability

6. Software Reliability Engineering Practice

7. Lessons Learnt

8. Background Literature

5. Experiences in Software Reliability

• Limits in software reliability

• Reliability & Availability Guidelines

• A Case Study from the Nuclear Industry

• How might we gain confidence in ultrahigh

reliability?

• The law of diminishing returns: ‘Heroic

debugging’ does not work

• Adams effect

• Exercises

Limits to reliability measurement (1)

• The dependence upon computers in safety-critical

applications is accelerating:
- A330-340 flight control: 10-9 failures per hour stated

requirement

- Sizewell B reactor protection: 10-4 prob of failure on

demand

- Air traffic control: 3 seconds per annum

- Chemical plant: risks comparable to nuclear

- Robotics (e.g. surgical assistance): surprisingly modest

requirements

- Automobiles (engine management, ABS, 4WS)

- Railway signalling and control (TGV): 10-12 prob of fail per

hour

Limits to reliability measurement (2)

• Can we build these to the reliability levels

needed?

• How do we convince ourselves that the

reliability targets have been achieved when

software plays a critical role?

• What are the limits to the levels of reliability

we can measure? Are these just limits to the

current measurement techniques, or are they

intrinsic?

http://openaccess.city.ac.uk/1251/1/CACMnov93.pdf

How much confidence should we place in a

system that has not failed at all? (1)

•Let the random variable T represents the time

to next failure, and let us assume that this

program has been on test for a period t0,

during no failures have occurred.

•T is exponential with rate 

•And mean  = -1

•Assume, in general, x failures of the program

during the period of testing t0.

How much confidence should we place in a

system that has not failed at all? (2)

•Bayes theorem states

p( | data)  p() p(data | ),

where the distribution p() represents the

prior belief on occurrence of the failures, ,

and p(| data) represent the posterior belief

after seeing the data.

•Assuming the sequence of failures as a

Poisson process, then p(data | ) is

proportional to x . exp(-t0).

How much confidence should we place in a

system that has not failed at all? (3)

•The form of p() (a conjugate family of distributions,

like Gamma) permits some homogeneity.

•The prior belief - Gamma (a, b), for some suitable

choice of a and b.

•p( | x, t0) is represented by Gamma (a+x, b+t0).

•Under conjugacy both posterior distribution and prior

will be a member of the same family: for example the

expected value, E(), changes from a/b to (a+x)/(b+t0),

so that observing a small number of failures, x, in a

long time time t0, will cause the posterior expected value

to be smaller than the prior.

http://openaccess.city.ac.uk/1251/1/CACMnov93.pdf

How much confidence should we place in a system that has not failed at all?

3)

How much confidence should we place in a

system that has not failed at all?
Ignoring prior distribution ?! (1)

•Modelling “total ignorance” is difficult.

•To represent initial ignorance, we should take a and b as small as

possible.

•The posterior distribution is approximately Gamma (x, t0), with the

approximation improving a, b  0.

•We could informally think of Gamma (x, t0) as the posterior in which the

data “speak for themselves”.

•When x=0 the posterior distribution for the rate is proportional to -1, and

is thus improper (i.e., it yields a total probability mass greater than 1).

•Worse, the predictive distribution for T is also improper, and is thus

useless for prediction.

How much confidence should we place in a system that has not failed at all?

Ignoring prior distribution ?! (2)

How much confidence should we place in a system that has not failed at all?

What prior belief is needed to arrive at a

posterior belief in ultra-high reliability?

Is such belief reasonable? (1)

•The conclusion here is that observing a long period of

failure-free working does not in itself allow us to conclude

that a system is ultra-reliable. It must be admitted that the

prior distribution here is rather unrealistic.

•Let us consider the case where the observer has genuine

prior beliefs about .

•Example: the reliability requirement is that the median

time to failure is 106 hours, and the trust has shown

failure-free working for 103 hours, what prior belief would

the observer have needed in order to conclude that the

requirement had been met?

How much confidence should we place in a system that has not failed at all?

What prior belief is needed to arrive at a

posterior belief in ultra-high reliability?

Is such belief reasonable? (2)

•From above, (a, b) must satisfy

3

3 6

1 10

2 10 10

a

b

b

 
  

  

which implies, since b>0, that a>0.1003288.

•It is instructive to examine what is implied by prior beliefs in

this solution set.

How much confidence should we place in a system that has not failed at all?

What prior belief is needed to arrive at a

posterior belief in ultra-high reliability?

Is such belief reasonable? (3)

•Consider, for example, a=0.11, b=837.2.

•Is this a “reasonable” prior belief? Not, since the prior

probability that T>106 is 0.458.

•The observer must believe a priori that there is almost 50:50

chance by surviving for 106 hours.

•If a = 0.50, b=332333, the prior P(T>106) is 0.499. As a increases

this problem becomes worse.

To believe that “this is a 106 system” after seeing only 103 hours of

failure-free working, we must initially believe it was a 106 system.

To end up with a very high confidence in a system, when we can see

only a modest amount of testing, we must bring to the problem the

relevant degree of belief.

Orders of magnitude less than …

You can argue with the details of all this, but I think you

are struck with the ball-park order-of-magnitude

representing by this argument:

•For the amounts of testing that are practically feasible,

the confidence to be gained solely from such information

is orders of magnitude less than is represented by, for

example, 10-9 failures/hr.

•Are there other sources of information, in addition

to testing, that could allow us to gain higher confidence?

(e.g. by allowing us to justifiably have strong prior

beliefs)

Reliability Guidelines

Typical ROCOF

(Failures/Hr)

Time Between

Failures

10-9h-1 114,000 years

10-6h-1 114 years

10-3h-1 6 weeks

10-2h-1 100 hours

10-1h-1 10 hours

Use Availability Guidelines

Acceptable Down

Time

Availability

5 minutes/year 5 nines (0.99999)

5 minutes/month or

1hour/year

4 nines (0.9999)

10 minutes/week or 1

shift/year

3 nines (0.999)

Software Reliability in Safety Critical Applications:

A Case Study from the Nuclear Industry (1)

• Software is being widely used in various safety
critical industries such as automobile, medical,
petrochemical, nuclear, railways, etc.

• The increase in software-based systems for
safety functions requires systematic evaluation
of software reliability. Software reliability
estimation is still an unresolved issue and
existing approaches have limitations and
assumptions that are not acceptable for safety
applications.

http://www.arsymposium.org/india/2012/abstracts/t2s2.htm

Software Reliability in Safety Critical Applications:

A Case Study from the Nuclear Industry (2)

• Existing reliability estimation techniques
require a sufficient and accurate history of
software failures, which is not available for
new software products. A novel idea uses
mutation testing and software verification. The
approach has been demonstrated through a case
study from the nuclear industry (specifically,
the core temperature monitoring system of a
nuclear reactor).

http://www.arsymposium.org/india/2012/abstracts/t2s2.htm

It need to …

• Firstly it needs to be emphasised that we do
need to express our dependability requirements
in the language of probability.

 The sources of uncertainty we have met earlier are
still present:

- Operational environment

- Incomplete knowledge of possible behaviour

 Informally we need to have sufficient confidence
that the system will fail sufficiently infrequently
(or, for a one-shot system, with sufficiently low
probability, etc).

How might we gain confidence in

ultrahigh reliability?

• Direct observation of operational behaviour of the
system (e.g. in test or simulation) is not going to give
assurance of ultra-high reliability:
 The problem of ‘representativeness’ of input cases

 The law of diminishing returns …

• Aids to be used to obtain confidence in software
designs:
 Past experience with similar products, or products of the

same process

 Structural reliability modelling

 Proofs and formal methods

 Combination of different kinds of evidence

 Validation by stepwise improvement of a product

‘Heroic debugging’ does not work

Later improvements in the MTTF require proportionally

longer testing.

Adams effect

• Field data on many copies
of a system undergoing
failures as a result of both
software and hardware
design faults; points are
‘current rate’ estimates
from LV, curve fitted by
eye.

• Again a strong law of
diminishing returns

• To get very low rate will
take extremely long time
even if achievable (what is
asymptote?)

• Adams effect: rates of faults
differ by order of
magnitude; system
eventually is depleted of the
‘large’ ones; unreliability
then comes from many
small faults; fixes have little
effect upon unreliability.

Software Reliability Course - Agenda

1. Motivation

2. Introduction to Software Engineering

3. Measuring Software Reliability

4. Software Reliability Techniques and Tools

5. Experiences in Software Reliability

6. Software Reliability Engineering Practice

7. Lessons Learned

8. Background Literature

6. Software Reliability Engineering Practice

• Software Reliability Tools

• SMERFS Main Features

• SREPT Main Features

• CASRE Main Features

• Frestimate Main Features

• CASRE in large

• Frestimate in large

• Examples

• Conclusions

Software Reliability Tools

• Statistical Modelling and Estimation of Reliability
Functions for Software (SMERFS) [William Farr of
Naval Surface Warfare Center]

• SREPT (Software Reliability Estimation and
Prediction Tool) [Center for Advanced Computing
and Communication Department of Electrical and
Computer Engineering Duke University]

• Computer-Aided Software Reliability Estimation Tool
(CASRE) [Allen Nikora, JPL & Michael Lyu,
Chinese University of Hong Kong]

• Frestimate [SoftRel, Ann Marie Neufelder,
http://www.softrel.com/prod01.htm

• etc.

http://www.softrel.com/prod01.htm

SMERFS Main Features

• Multiple Models (12)

• Model Application Scheme: Single Execution

• Data Format: Failure-Counts and Time-Between
Failures

• On-line Model Description Manual

• Two parameter Estimation Methods

• Least Square Method

• Maximum Likelihood Method

• Goodness-of-fit Criteria: Chi-Square Test, KS Test

• Model Applicability - Prequential Likelihood, Bias,
Bias Trend, Model Noise

• Simple Plots

SREPT

CASRE Main Features

• Multiple Models (12)

• Model Application Scheme: Multiple Iterations

• Goodness-of-Fit Criteria - Chi-Square Test, KS Test

• Multiple Evaluation Criteria - Prequential Likelihood,

Bias, Bias Trend, Model Noise

• Conversions between Failure-Counts Data and Time-

Between-Failures Data

• Menu-Driven, High-Resolution Graphical User

Interface

• Capability to Make Linear Combination Models

CASRE High-Level Architecture

CASRE Screen Shot

CASRE – Running average Trend Test

CASRE – Laplace Test

CASRE – Select and Run Models

CASRE – Display modelling results

CASRE – Ranking Models

Frestimate Main Features

• Frestimate is a software reliability tool
providing basic software prediction
capabilities.

FRESTIMATE - topics

• Frestimate – prediction/estimation models

• Frestimate versus CASRE/SMERFS

Frestimate: prediction models (1a)

• Prediction models - regardless of whether they are for

software reliability or any other application - are

developed by collecting trained data and observing

relationships in that features and some outcome. In the

case of software reliability the outcome is delivered

defects normalized by code size.

• The features vary from model to model and are generally

related to development practices. Some models have

only one feature. Some models have many features. The

model is the mathematical expression that determines

some outcome given some set of features.

Frestimate: prediction models (1b)

• Predictors are used early in the development

lifecycle to:

- Determine whether the current

capabilities/development practices are suitable for

meeting a system reliability objective

- Select the development practices that would allow

the system reliability objective to be met

- Determine whether vendor supplied software will

meet a system objective

Frestimate: prediction models (1c)

• Predictors are used early in the development

lifecycle to:

- Determine suitable quality and reliability objectives

for the software

- Determine staffing requirements for maintenance

and testing

- Predict the inherent number of defects in the

software at the start and end of testing

Frestimate: estimation (1)

• Estimation models - are models that project
the future based on what has happened in
the immediate past - on this project.

• Estimators do not use trained data like
predictors, they use data collecting only
from the project in which we are interested
in measuring.

Frestimate: estimation (2)

• Estimators have a variety of purposes
including:

- Projecting how many more hours of
testing are needed to reach some
reliability objective

- Projecting how many more defects
must be detected and then fixed to
reach some reliability objective.

- Validating a reliability prediction

Frestimate / trained data

• Because the actual fielded defect density is
known for the sample, it is called trained
data.

• By exploring relationships between the
development practices and observed defect
density in trained data, we can develop
mathematical models to predict defect density
for organizations in which the development
practices are known but the defect density is
not known.

Rome Laboratory Model (1)

• The Air Force's Rome Laboratory developed
predictions of fault density that could be
transformed into other reliability measures such
as failure rates.

Rome Laboratory Model (2)

A number of factors were selected:

A - Application type (e.g., real-time control systems, scientific,
information management),

D - Development environment (methodology, tools, languages),

Requirements and design representation metrics (AM - anomaly
management, ST - traceability, QR - incorporation of quality
review results),

Software implementation metrics (SL - language type [assembly,
high-order, object-oriented, etc.), SS - program size, SM -
modularity, SU - extent of reuse, SX - complexity, SR -
incorporation of standards review results into the software).

The initial fault density prediction is given by the product

0 = A*D*(AM*ST*QR)*(SL*SS*SM*SU*SX*SR).

Rome Laboratory Model (3)

A prediction of the initial failure rate is made as

[Musa] 0=F*K*0*number of lines of source

code = F*K*W0, where:

 W0 is called also ‘The number of inherent faults’

 F is the linear execution frequency of the program

 K is the fault expose ratio (1.4E-7<=K<=10.6E-7).

The fault exposure ratio, K, is an important factor

that controls the per-fault hazard rate, and hence,

the effectiveness of the testing of software.

Rome Laboratory Model (4)

The initial failure rate can be expressed also by
letting F=R/I, where :

• R is the average instruction rate and

• I is the number of object instructions in the
program,

and then further rewriting I as Is*Qx, where

• Is is the number of source instructions and

• Qx is the code expansion ratio (the ratio of
machine instructions to source instructions - an
average value of 4 is indicated).

Rome Laboratory Model @Frestimate

FRESTIMATE ‘against’ CASRE and

SMERFS

Software Reliability Course - Agenda

1. Motivation

2. Introduction to Software Engineering

3. Measuring Software Reliability

4. Software Reliability Techniques and Tools

5. Experiences in Software Reliability

6. Software Reliability Engineering Practice

7. Lessons Learned

8. Background Literature

7. Lessons learned

• The increase in software-based systems for
safety functions requires systematic evaluation
of software reliability.

• Software reliability estimation is still an
unresolved issue and existing approaches have
limitations and assumptions that are not
acceptable for safety applications.

• Direct observation of operational behaviour of
the system (e.g. in test or simulation) is not
going to give assurance of ultra-high reliability

Tentative summary of the story so far:

• Lots of models but no single “best buy”

• The bad news: some models almost universally bad,

all models occasionally bad!

• The good news: some models OK sometimes

• Cannot select a model a priori and trust it to work

(even if it worked well on a previous project, and you

think the current project is ‘similar’)

• Be eclectic: try many models on your data and check

for accuracy of predictions

It is USUALLY possible to predict software reliability with

REASONABLE accuracy and have SOME CONFIDENCE you have done so.

General conclusions

• The bad news …
- No perfect model

- No way of selecting the best models a priori

- All models sometimes inaccurate

• … the good news …
- Can analyse predictive accuracy dynamically

- Recalibration often improve accuracy

- Can usually obtain accurate reliability estimates and know
they are accurate

• … and the warning …
- These techniques only work for modest reliability levels

- They are essential no way assuring that ultrahigh reliability
has been achieved

Why Such Inactivity?

There are a number of reasons for this inactivity:

• Lack of awareness/training

• Disillusionment following “false starts” with immature
measures and models. “All Models are Wrong - Some are
Useful” (George E. P. Box)

• Too busy grappling with the current crisis to see long term

Software Reliability Course - Agenda

1. Motivation

2. Introduction to Software Engineering

3. Measuring Software Reliability

4. Software Reliability Techniques and Tools

5. Experiences in Software Reliability

6. Software Reliability Engineering Practice

7. Lessons Learned

8. Background Literature

References

http://www.cse.cuhk.edu.hk/~lyu/book/reliability/

DOF – Degrees Of Freedom
In statistics, the number of degrees of freedom is the number of

values in the final calculation of a statistic that are free to vary.

A data set contains a number of observations, say, n. They constitute n

individual pieces of information. These pieces of information can be

used either to estimate parameters or variability. In general, each

item being estimated costs one degree of freedom. The remaining

degrees of freedom are used to estimate variability.

A single sample: There are n observations. There's one parameter (the

mean) that needs to be estimated. That leaves n-1 degrees of freedom

for estimating variability.

Two samples: There are n1+n2 observations. There are two means to

be estimated. That leaves n1+n2-2 degrees of freedom for estimating

variability.

http://en.wikipedia.org/wiki/Degrees_of_freedom_%28statistics%29

EOC – End Of Course!

http://www2.imm.dtu.dk/~popen/pec/pec.html/

	Popentiu coperta curs.pdf (p.1)
	Course SRE-actual-slides=359.pdf (p.2-360)

