Advanced Mechatronics Systems

Software Reliability Engineering

Florin Popentiu VLADICESCU

Professor Florin Popentiu Vladicescu graduated in Electronics and
Telecommunications from University POLITEHNICA of Bucharest in
1974 and holds a PhD in Reliability in 1981. He has been Chairholder
of the UNESCO Chair in Information and Communication Engineering
at City University London since 1998 and also he has been appointed
Director of the “UNESCO Chair’ Department at University of Oradea.
Professor Florin Popentiu VlIadicescu has published over 100 papers in
international journals and conference proceedings and is

co-author of three books.

He has worked for many years on problems associated with software
reliability and has been Co-Director of two NATO Research Projects,
involving collaboration with partner institutions throughout Europe.
Also he is on the advisory board of several international journals,
including “Reliability and Risk Analysis:

Theory & Applications” and “Microelectronics Reliability”,

and is a reviewer for “ACM Computing Reviews”.

He is an expert for the Seventh Framework Programme-FP7.

His Research ID is E-5787-2010. Also in 2009 he has been nominated

UNESCO Expert in the field of Higher Education, Research and Knowledge.

Professor Popentiu Vladicescu is currently Visiting Professor

at the Paris Institute of Technology - "ParisTech" - which brings
together 24 of France's best engineering and business schools.
He also lectures at the Technical University of Denmark.

He was elected Fellow of the Academy of Romanian Scientists in
2008 and Director of the Doctoral School “Engineering sciences” —
November 2011.

Course book
First Edition

Debrecen (HU)
2012.

Advanced Mechatronics Systems

FLORIN POPENTIU VLADICESCU Software Reliabilit

X
()
]

o]
()
(2
o
2
O
(&)

y Engineering

Advanced Mechatronics Systems

edited by Florin Popentiu VLADICESCU

Software
Reliability Engineering

First Edition

Course book of Series of
Advanced Mechatronics Systems

Debrecen (HU)
2012.

Software Reliability

Florin POPENTIU
University Politehnica of Bucharest

ENSTA ParisTech
popentiu@imm.dtu.dk D
Fl.Popentiu@city.ac.uk ENSTA
Parislech

\
/

(D
| SN

Software Reliability - Course Objectives

=T

......

Measuring software reliability
Generic approach and specific models
Evaluating predictions

Capabilities and limitations

Reliability assessment in the life-cycle
Data collection

Jnanswered questions

Software Reliability Course - Agenda

......

Motivation

Introduction to Software Engineering
Measuring Software Reliability

Software Reliability Techniques and Tools
Experiences in Software Reliability
Software Reliability Engineering Practice
Lessons Learned

Background Literature

e S A e A o

‘ 1. Motivation

......

~« Introduction
~« Errors, faults and failures

 Faults and failures: examples
 Actual software disasters
 The relationship between faults and failures
« Case Study — Therac 25
» When are software faults introduced?
-« What is reliability?
-+ What is dependability?
« Dependable systems
'« Hancock’s Half Hour!

What is “Software”?

......

«An abstract digital definition of system behaviour.
*Made concrete by compilation and loading.
*Defines much of system internal state.

Includes interfaces (H/W-s/W, HCI, etc.).

eIncludes documentation.

- *May be firmware, microcode, operating system,
- application.

- +System may consist of H/W, S/W, or both.

Why use software?

......

Light
Easily modified
Supporting hardware very reliable

*Demand for “smart” systems

How Hard i1s Software ?

......

Software i1s so hard that —

 £1Dbillion is spent annually in the UK on software

B EHEDOOREIO®

«QOver half this 1s wasted!

“Waste” includes:
«Cost of overruns
«Cost of correcting errors

- +Penalty due to not using quality assurance procedures
- «“unnecessary” expenditure on maintenance. ll“ll
)‘ I-ﬂll

M@ﬁkﬂﬁ

<
What is reliability?

)

| [Two senses: .

! o L.Il'll'E.';I,a 118
-+ General: The ability of a s

& - reliability

A system to perform a required

‘!] funCtion under given reliableness]

ll?i conditions for a specific time

|,". i inte rval . dependability

o

[
-

| \ * Precise: The probability that
| a system will operate Without ey i
 failure under given ’
| conditions for a specific time
| Interval.

‘ Random Variable t, time-tofailure

Probabhility of Success
(Reliahility)

The “Software Crisis”

......

OVER due, OVER budget, UNDER quality

Society Is increasingly dependent on complex digital
systems
*They are delivered late
*They cost more than was planned
*They are not good enough

- don’t meet their functional requirements

- unreliable, unsafe, insecure, unusable, not

maintainable

 In particular, they are “undependable”

1 . Physical system components deteriorate over time,

|

? « Software reliability is rarely of concern to most

people until something goes wrong.

while software does not.

il « However, unlike a human operator, software does not

i

Bl
|

adapt well to situations which were not anticipated by
~Its designers, and such failures can prove enormously

costy. SOFTWARE
| RELIABILITY 2012.

Does Software Reliability Make Sense?

......

« Developers, users and military organizations are often
concerned about the reliability of systems that include
software.

« Qver the years, reliability engineers have developed
detailed and elaborated methods of estimating the
reliability of hardware systems based on an estimate
of the reliability of their components.

 Software can be viewed as one of those components,
and an estimate of the reliability of software Is
considered essential to estimating the reliability of the
overall system.

Hardware/Software differences

=

......

*Hardware is manufactured
- Designed once
- - Many imperfect copies
" «Software is “all design”
- Design transformed into code
- Many perfect copies

. «Every software product is a “prototype”

Hardware/Software maintenance

......

Hardware maintenance

- System “down” until repaired

- Corrective maintenance restores system to “good as
old”

- Design change difficult

- Requires movement of men and material

Software maintenance
- “Transient” failures
- Corrective maintenance improves system design
- Design change easy
- Requires movement of information

Errors, faults, and failures

......

bo)

01

11

0

ﬁ 10
101

00001110
11010101
canlead to 1111610
01100100
10101

- =0 Q=

can lead to

=]

Error Failure

Error: Designer’s mistake

e.g. failure to distinguish signed and absolute value numbers in an algorithm
Fault: Encoding of an error into software

e.g. ‘X:=Y’ 1s coded instead of ‘X:=ABS(Y)’

» Failure: Deviation of the software from its specified delivery or service
(incorrect output or timing of output)

e.g. nuclear reactor exhibits behaviour likely to be an earthquake hazard.

Failures of Complex Systems (1)

......

“Physical” failure:
*Hardware component breaks.
«Cause Is physical (e.g., wear-out, overload,
corrosion).
«““fault” appears 1n system at that point in time.
*Fault may cause failures unless “masked” by
“redundancy”.
«System repaired by replacement of broken
component.
«System Is thereby restored to its previous good
state.

Failures of Complex Systems (2)

=i

......

Design failure:

» defect In design

» cause Is intellectual (bad requirement, careless
design)

e fault 1s present 1n system, but “latent”

» may cause failure with some inputs or internal
states

* repalir by changing design

e system 1s different from its previous “bad” state

- System Fallure

Fault

w
. * ol

Error =——p»Error —» Ermor —p E.rmr —h Failure
i /' - ;* Effect
ﬂ Trigger
| Mechanism
e

Fault = something “wrong” with the system
Cause —p '
{ Trigger = circumstances which activate fault }

| Error = incorrect internal state
| Mechanism = cause & effect propogation of error
| Failure = departure from required behaviour
| Mode = observable symptons
\ Effect = consequence for environment

Attributes of failures, faults and changes

|
|

I <
a5 .Sevemy -
' . i ‘ 'I"@

Mechani } "",'
S it
| Effect , .‘;"

Changes § \

NN
\\
1| @ ‘@

|

r
!

Faillures and faults

=G

......

A failure corresponds to unexpected run-time
behaviour observed by a user of the software.

A fault 1s a static software characteristic which causes
a fallure to occur.

Faults need not necessarily cause failures. They only
do so If the faulty part of the software Is used.

|f a user does not notice a fatlure, is i1t a failure?
Remember most users don’t know the software
specification.

Causes of faults

L] G
Problems at any stages of the design process can result in faults within the system.

Specification
mistakes

Software
faults

Implementation
mistakes

System
failures

Errors

External
disturbances

Hardware
faults

Component
defects

| http://www.imm.dtu.dk/English/Teaching/IMM%20Courses.aspx?coursecode=02228

2 Causes of faults, cont.
-] " - m‘-
| Specification mistakes
| — Incorrect algorithms, architectures, hardware or software
design specifications

e Example: the designer of a digital circuit incorrectly specified the
timing characteristics of some of the circuit’s components

|
|
H
- Implementation mistakes

| \ — Implementation: process of turning the hardware and
3' \‘ software designs into physical hardware and actual code

, \
i software coding mistakes

[
[' \'ﬂ e Examples: software coding error, a printed circuit board is
constructed such that adjacent lines of a circuit are shorted together

— Poor design, poor component selection, poor construction,

| \
|
| http://www.imm.dtu.dk/English/Teaching/IMM%20Courses.aspx?coursecode=02228

Fallure classification

Failure class | Description
Transient Occurs only with certain inputs
Permanent Occurs with all inputs

Recoverable

System can recover without operator
Intervention

Unrecoverable

Operator intervention needed to
recover from failure

Non-corrupting

Failure does not corrupt system state
or data

Corrupting

Failure corrupts system state or data

Failure consequences

......

- Reliability measurements do NOT take the
conseguences of failure into account.

* Transient faults may have no real.
conseguences but other faults may cause data
loss or corruption and loss of system service.

*May be necessary to identify different failure
classes and use different measurements for
each of these.

The relationship between faults and failures

Common faults: MTTF <50 years

Faults with
S0<MTTF<160 years

160 < MTTF < 500 years

rare faults
TF < 1600 years

(MTTF = Mean Time To Failure)

Sample from 9 major software products, each with many
thousands of years logged use world-wide.

Ref: Adams E., Optimizing preventive service of software products”, IBM J Research &
Development.

Diminishing returns

......

& 5,000
-
g~1,600
w 500
1
2 -160
<
w
S 50
LEU ~16
; 5
<C
w ~1.6
=
0 5 10 15 20 25 30 35
PERCENTAGE OF ALL FAULTS
: 1.00
20 —
Z
0.88 3
175 :
S 15 075 2
28 £
Q=125 068 >
ww 2 fo) =
83 050 39
m 5 10 3 S
< E 3
o 038 § =
w 7.5 s
£% 0.256 T m
3 5 8 ’ éo
T ss5- 0.13 3
0 0

40 50 60 70 80 90 100 110 120 130
NUMBER OF FAULTS REMOVED

Software faults persist even in
well-debugged programs.
Edward N. Adams of IBM
found that bugs that remained in
a system were primarily “5000-
year” bugs — that is, each of
them would produce a failure
only once in 5000 years (top).
Such faults make debugging an
exercise in diminishing returns:
in the test of a military
command-and-control system
(bottom), the time needed to
remove the bugs begins to
outpace by far the resulting
improvement in the estimated
reliability, measured in terms of
estimated achieved MTTF.

For visual clarity, the graphs
have been plotted on different
time scales.

Source: Littlewood B., Strigini
L., The Risks of Software,
Scientific American, Nov.,
1992, 62-75.

Faults and failures: examples

......

 Therac 25

Failure: man killed by huge overdose of therapeutic radiation.
Fault: improper echoing of keyboard commands on VDU.

* NASA probe to Venus

I Failure: prove went off course and was lost.
ﬂ Fault: in the navigational FORTRAN code the statement .
DO 31=1.3 was written instead of DO 31=1,3.

« A320

| Failure: An A320 crashed in India killing 92 people.
- Fault: 72777

 (see the story of the Ariane Flight 501, 1996:
’ http://www.youtube.com/watch?v=IONcgYzVFIq)

http://www.youtube.com/watch?v=IONcgYzVFlg

Ariane 5 Rocket Explosion - 1996

R E A E N T R A s B N T R N e

Loss
rocket: $500 million
project: S7 billion
Description
— Intentionally destroyed 40 s after liftoff
Cause

— Variable overflow because of reuse of
software module (from Ariane 4) related to
horizontal velocity measurement.

SO TR aYEY

SHBREEE S O

— This happened simultaneously in both the
active and the back-up computer.

http://www.imm.dtu.dk/English/Teaching/IMM%20Courses.aspx?coursecode=02228

- Software disasters

......

« Therac 25
~ Software controlled radiation therapy.
Software interlock governed high/low beam strength.

Interaction of operator error and software fault -> high strenth beam.
without shield in place

Killed 2, injured others.

. Citibank (1989)
~ Electronic funds transfer through CHAPS.

~ Interaction of operator error and design fault -> wrong date supplied.
~ Repeated previous day’s transfers.
~ Money recovered within 2 days!

Case study: Therac 25

......

Radiotherapy machine failure

- 2 deaths, several injuries

2 modes of operation

- X-ray: high-intensity beam strikes tungsten target

- electron: low-intensity beam with target retracted

- treatment programmed using monitor and keyboard
The accidents

- high-intensity beam, with target retracted

- “Malfunction 54”

The trigger

- use of 4 to correct a typing error

Therac 25 Failure

Location: East Texas Cancer Center
Timing: 21 March 1986 (#treatment hours unknown)
Mode: ‘Malfunction 54°on operator screen
Effect: Beam strength too great by factor of 100
Mechanism: Use of up arrow key corrupted internal
software variable

THERAC 25 SET-UP

Cause: Unintentional design fault ryson
Severity: Critical (loss of life) o T/
Cost: Financial loss In

litigation/investigation e

You cannot predict what you cannot measure!

Patriot Missile System - 1991

4 Loss

28 soldiers dead
gg 100 injured

4 Incident

— The system failed to intercept an
incoming missile

Cause

— Time is kept continuously by the
system's internal clock in tenths of
seconds but is expressed as an
integer (e.g., 32, 33, 34...)

— The Patriot battery had been up
around 100 hours, resulting in an
precision error of 0.34 seconds

eleEE T e

""’-‘?E"#’Eﬁ L

http://www.imm.dtu.dk/English/Teaching/IMM%20Courses.aspx?coursecode=02228

IC4 Marslev incident - 2011

Loss

— Tens, maybe hundreds of
millions DKK

Description
— On 14 November 2011 DSB
stopped operations with all

IC4 trains after an IC4 train

overran a red stop signal at
Marslev

Cause

— Slippery rails and
“inefficient” braking system

— See the DTU report

http://www.imm.dtu.dk/English/Teaching/IMM%620Courses.aspx?coursecode=02228

Amazon Cloud Outage - 2011

L (1 303k, 0303 1. £ 1.

Loss

— difficult to quantify, but many
Web 2.0 websites were affected
for hours, days

Description

— Amazon EC2 services were un-
available for a hours

— Some permanent data loss

— “The trigger for this event was a
network configuration change.”

http://www.imm.dtu.dk/English/Teaching/IMM%20Courses.aspx?coursecode=02228

Analysis of 347 computer-related infrastructure failure cases
[Rahman, Beznosov, Marti, “Identification of sources of failures and their propagation in critical infrastructures
from 12 years of public failure reports”, Int. Journal on Critical Infrastructures, vol.5, n®3, 2009]
L1303 1L, E30] 1,0} 1, 1. L.OJ L. Oy 1, O --o 0
b0
Unknown 20
" 0 Total
) —Unintentional
ﬂ 50 —=|ntentional
Intentional : _ = Unknown .
Unintentional i /AN
30 S
61% 7 =
2 _/‘—-—/‘r—l_)
10 ,._....-—r""“_ T .
0 _‘:—::r;'_;'_:'-;. @ o = o =
&
8 38888888888 ¢
Vandalism 50
Mal Logic Fault /1% \
u 11% 50
< g ——High / \ »
= Authorization Software Fault g 10 =~ Medium / v
Violation 36% E 10 Low
0% o
B Natural Fault 2 20 A
i 2% S o N/
A Overload 1 — v
b >0 ;f;mware Fauit . -.=,_,_"/ _ "
- Human Emor 1994 1996 1998 2000 2002 2004

Why Is Software So Bad?

=

~~~~~~

It Is essentially difficult:-
*Novel
«Complex
: -Discontinuous

“‘Invisible”

*Hard to predict

eHard to measure

It is also NOT ENGINEERED



Novelty by design (1)

=N

......

Novel designs give nasty surprises!

*““Traditional” artefacts “evolve” gradually:-
-bridges: standard designs “off the shelf”
-cars. most design features go back 100 years

-even so, disasters occur: Tacoma, Tay

«Software has been around for only 60 years:-

-few “standard” design

-frantic rate of change



Novelty by desig (2)

.\.nv?t .il'-

Novel designs give nasty surprises!
| *New problems generate new solutions

 *Every software product 1s a “prototype”:-
El _ L .
| -unique, even though many identical copies

exist

-each program Is only developed ONCE
(unlike widgets: developed once, produced
In millions)



Complexity

The human mind cannot cope with complexity
«Software Is the most complex thing ever made
Difficult to visualise

Unstructured

«10.000.000 lines of source Is common

*Absorbs most intellectual effort in system
development



Discontinuous Behaviour

......

| Software is discrete
| <Billions of internal states
*Most of them can given rise to failure

ﬂ «Impossible to test exhaustively
- too many paths
- too many internal states
- t00 many Input cases
- non-deterministic behaviour

- «When things go wrong, the go VERY wrong



The “Craft” Approach

......

Software has tended to be a cottage industry:-

*Produced by creative effort

- more like writing a novel than engineering

- written by geniuses for geniuses
- “How dare you criticise my creation?”

eInvisible

- “Why should you read my code?”
- “Of course 1ts all right! I wrote 1t! I tested 1it!”
- “You’re crushing the butterfly’s wing of my creativity!”

*This Is WRONG attitude for an engineer!
- Weinberg: “Ego — less programming”
- Professional maturity
- Even you can make mistakes!



What is “dependability”?

......

Defined as:

“The extent to which the user can justifiably
depend on the service delivered by a system.”

J-C. Laprie: Dependability: basic concepts and
terminology

Important concepts: “required service”, “user”,
“system”

“Umbrella” term: not measurable attributes

Different authors use different sets of attributes
(Laprie, BS5760)



——
Y O SR

Definitions of dependability attributes

“RAMURSES”

......

Attribute ...

... defined as ability of a system to ...

Reliability:

... deliver required service

Availability:

... bein an “up” state

Maintainability:

Corrective... be repaired to remove faults
Adaptive ... be modified for new environment

Perfective ... be enhanced to improve service

Usability: ... provide ease of access for user
Recoverability: .. resume service after failure

Safety: .. be used without accident

Efficiency: .. complete task within given resources
Security: .. resist unauthorised interference




Dependable systems

......

We need depend on systems. They must be:

| Reliable: Deliver the required service under given time.
' | Safe: Must not kill people.
|
f] Secure: Must not allow unauthorised access.
' Usable: Must be “friendly”: easy to learn and use.

| Maintainable:

Must be quick to recover after failure, and easy to
repair so that they do not fail again.

Available:

Must be ready for use a high proportion of time.

| Extendable:

Must be easy to enhance to perform new functions.




How to make software-based systems

more dependable

~~~~~~

Fault avoidance:

Good management
Disciplined process
Careful requirements capture & design

| |Fault removal:

Design and code inspection
Static analysis
Testing

Fault tolerance:

Defensive design: “belt & braces”
Diverse redundant modules
Manual back-up

Dependability
measurement:

Realistic trial
Collect data (failures, faults, operating time)
Analyse data to evaluate “RAMURSES”

Dependability - Resilience
) Ls ha X L O3 C3 Lo £3-°0 oyt e

Dependability: ability to deliver service that can justifiably be trusted

;:::ﬁda:::tal malicious) " = Failures = Faults = Errors = Failures = Faults me ...

///vﬁ

Attributes Availability Reliability Safety Confi n:jentl.alltj,r Integrlty Maintainability
Means Fault Prevention Fault Tolerance Fault Removal Fault Forecasting

Resilience: The persistence of dependability when facing changes

i

|

2

Safety Integrity

Definition
— Safety integrity is the likelihood of a safety-related system
satisfactorily performing the required safety functions under all

stated conditions within a stated period of time.

ﬁ Captured using Safety Integrity Levels (SILs)

— SlLs are a measure of the required protection against failure
— SlLs are assigned to the safety requirements in accordance with

| target risk reduction
— Used to determine what methods and techniques should

|
|
be applied (or not applied) in order to achieve the required

|

|

integrity level

http://www.imm.dtu.dk/English/Teaching/IMM%620Courses.aspx?coursecode=02228

o

|EC 61508 Standard

IEC 61508 is intended to be a basic functional safety standard applicable to all

kinds of industry.

— The standard covers the complete safety life cycle, and may need interpretation to
develop sector specific standards. It has its origins in the process control industry sector

Can be tailored to different domains (automotive, chemical)

Comprehensive
Includes SlLs, including failure rates

Covers recommended techniques

\ Notes:
| - IEC = International Electrotechnical Commission

\ — E/E/PES = electrical/electronic/programmable electronic safety related systems

|

http://www.imm.dtu.dk/English/Teaching/IMM%20Courses.aspx?coursecode=02228

|

\

Safety-Integrity Table of IEC 61508

2 10%to < 10

Safety Low demand mode of operation
Integrity (Average probability of failure to perform its design function on demand)
Level
4 Z2105%to < 104 (> 99.99 % reliable)
3 =210*to < 10° (> 99.9 % reliable)
2 210%10 < 102 (> 99% reliable)
1 2 10?to < 10! (> 90% reliable)
Safety High demand mode or continuous mode of operation
Integrity (Probability of dangerous failure per hour)
Level
4 = 10°t0o < 10°®
3 2 10%to < 107
2 210710 < 10°
1

The higher the SIL, the harder to meet the standard
High demand for e.g. car brakes, critical boundary SIL 3
Low demand for e.g. airbag, critical boundary is SIL 3, one failure in 1000

activations

http://www.imm.dtu.dk/English/Teaching/IMM%020Courses.aspx?coursecode=02228

Hancock’s Half Hour

Tony Hancock: “But I’ve just
been throttled half to death by
a flamin’ python! Why won’t

the insurance company pay
out?”

Sid James: “Well, you see, they
only insured you against

accident, but the snake meant
it!”’

Software Reliability Course - Agenda

......

Motivation

Introduction to Software Engineering
Measuring Software Reliability

Software Reliability Techniques and Tools
Experiences in Software Reliability
Software Reliability Engineering Practice
Lessons Learned

Background Literature

e S A e A o

2. Introduction to Software Engineering

......

* The phases of a software project
» Types of software

 Achieving software reliability: diverse sources
of information

 Products, processes, and resources

 Achieving software reliability: diverse
approaches

What is “Software Engineering”

......

. Application of mathematical, scientific,
organisational principles

» Concept, design, Iimplementation, maintenance

 Achieve adequate quality with given time and
resources

~ « Large projects

The Phases of a Software Project

......

« Enthusiasm

 Disillusionment

« Panic

« Collapse

 Search for the guilty

« Punishment of the innocent

« Rewards and honours for those not involved

Types of software

......

« (Games
« \Working machine programs
» Operating systems
« Commercial applications
 Process control
» Embedded military & nuclear
 Flight-critical (‘Fly-by-wire’, e.g. A330-340)
What is ‘quality’ in each case?
‘Quality 1s conformance to requirements’. Philip B. Crosby

‘Quality 1s free, but only to those who are willing to pay

heavily for 1t’ 1. DeMarco and T. Lister , Peopleware : Productive Projects and
Teams, 2nd Ed. by Tom Demarco, Timothy R. Lister , ISBN: 0932633439

So what are the requirements?
‘Horses for courses!’

http://www.softwarequotes.com/showquotes.aspx?id=604&name=T.%20DeMarco%20and%20T.%20Lister

Software Development Phases

I-IA
TEWET.

development process:

Concept

SOTEWETES

» Software Requirements = feiaas

\

« Top Level Design o~ Pevi - |

« Detailed Design - Cai

« Code/implementation a(_*:i*ffj“' .
« Unit/development Test e

l (Maintenance))
« System/verification/validation
TeSt customer

» QOperational Test
« QOperation

Planning

Risk analysis

Engineering

Canstruction & Release

Software Development Overview

g Ki "3 1 I O WTR B8 "B B3 S A RthRAE AT & A

- : i f f 3] B “"R. BT K i 3 B 1 :
mlu =1 ; =3 T S, N8 B TR T s R M aTaTaVam WaTas - b 3)
R R T R N s E R ST RN AN AN s R T R N s AN A S ST R E WA TE N NS RN TENSTISS

— =
Requirements | = Analysis |
Software ll Detailed
Requirements Design
Prelimi # Coding |
Software reliminary —— ” |
' ntegration
Requirements Deslys, °

Specification I Jesting |

Prelim. Program |

Preliminary Review

— ' r . o ol
St of docurngres,

cdlzig s, Sic.

: Operating
Design) ' : : | Instructions
Document _ Design Review _

Ul Design | Code
Document EViEW Operations I|

When are software faults introduced?

......

Requirements:

Gripen: “control laws”, ICL (Fujitsu Service)
“usability problems™

System design:

Therac: no fault-tolerance (H/W interlock)

Software Mariner: missing “bar’” in mathematical formula
1. specification:
f | Coding: Mercury orbiter: “dot for comma”
| Compilation: | Pascal compilers: -ve exponential, floating

point I/P

| Maintenance:

LAS(2): London Ambulance Service “memory
leak”

. Requirements faults give most serious failures but ...
... can we ensure against failures that are “deliberate”?

Cyber attacks: the threat is real

W e A e N T . A B N o e T s s

HReported Attacks on US Critical Infrastructure

2010 5941 019
2013*

* Projection based on
& months data

Source: US Dept of Homeland Security ICS-CERT

John S. Kendall, Potential Impact of Cyber Attacks
on Crtical Infrastructure, Unisys

System Requirements Analysis

......

Establish need and feasibility
-Overall functional requirements
-Dependability requirements
-Cost and schedule constraints

*Subsystem/component breakdown
-ldentify system elements
-Define the process carried out by each
-Define interfaces

-Apportion dependability among elements

ldentify software elements
-Define software FRs and NFRs
-Initial statement of software requirements
-Develop software requirements specification

Reliability specification

......

Reliability requirements are only rarely
expressed In a quantitative, verifiable way.

To verify reliability metrics, an operational
profile must be specified as part of the test plan.

Reliability i1s dynamic — reliability specifications
related to the source code are meaningless.
*No more than N faults/1000 lines

*This Is only useful for a post-delivery process
analysis

Specification validation

......

* It Is Impossible to empirically validate very
high reliability specifications.

* No database corruption means PODOF of less
than 1 in 200 million.

» |f a transaction takes 1 second, then simulating
one day’s transaction takes 3.5 days.

It would take longer than the system’s lifetime

- to test for reliability.

Steps to reliability specification

=

......

For each sub-system, analyse the consequences
of possible system failures.

~ *From the system failure analysis, partition
¢ failures into appropriate classes.

| *For each failure class identified, set out the
~ reliability using an appropriate metric. Different
- metrics may be used for different reliability
requirements.

Examples of a reliable specification

Failure Example Reliability
class metric
Permanent, | The system fails to operate with ROCOF
Non-corrupting any card which is input. 1 occurrence/1000
Software must be restarted to days
correct failures.
Transient, The magnetic stripe data cannot PODOF

Non-corrupting

be read on an undamaged card
which is input

1 in 1000 transactions

Transient,
corrupting

A pattern of transactions across
the network causes database
corruption

Unquantifiable!
Should never happen
In the lifetime of the

system

Reliability and formal methods (1)

......

*The use of formal methods of development may
lead to more reliable systems as it can be proved
that the system conforms to its specification.

*The development of a formal specification
forces a detailed analysis of the system which
discovers anomalies and omissions in the
specification.

*However, formal methods may not actually
Improve reliability.

Reliability and formal methods (2)

......

~ *The specification may not reflect the real
requirements of system users.

A formal specification may hide problems
| because users don’t understand it.

~ *Program proofs usually contain errors.

~ *The proof may make assumptions about the
- system’s environment and use which are incorrect.

IV &V

......

-Independent Verification and Validation

- Two contractors: developer and monitor
- Commercially independent
& - Monitor has no vested interest in delivery

l;] - Access points contractually defined

‘ . Advantages

- Checker is well-motivated

- Diversity of approach

. Disadvantages

- Expensive (up to 60% on contract)

VALIDATION AND VERIFICATION

=

Verification: Are we building the product right?

Validation: Are we building the right product?

Validation

Testing | Design

Implemen-
tation

Specifi-

S eration
cation Op

\ User

\) Feedback

User

Verification

Testing

Specifi-
cation

tation

Operation

Implemen-

Feedback

Verification & Validation

......

The System may have been verified,;
\ Have we built the system “correctly”?
e But inadequately validated?

Have we built the “correct” system?

This 1s often satirised by customer’s remark:

It’s just what I asked for, but not what I want!

Testing Strategies

......

*Dynamic testing Vs Static testing (static analysis)
-In dynamic testing, the test data is executed on real machine

Black Box Testing Vs White Box Testing
-In black box testing, test cases are derived from the

ﬂ specification or requirements without reference to the code
i Itself or its structure

-In white box testing, test data are derived from the internal
program structure

*Testing Random
-using test cases in which all the test data are random

Testing has many purposes...

......

Reliability testing — measuring reliability
« Acceptance testing — fit for delivery?
Unit testing — modules working on isolation?

*Integration testing — modules working as a
system?

eEtc...

... but only one goal

=T

......

To discover faults

A successful test is one which establishes
the presence of one or more faults in the
software being tested.

Remember ...

......

.. testing aims to find faults.

. testing 1s finished when the acceptance criteria
A have been met — not when the time runs out

.. the importance of test specification and
planning.

FAGAN INSPECTION

M.E. Fagan, IBM

-Hardware inspection methods applied to software
-In use since early 70’s

-Shown to be effective

-Larger award to originator

Highly formalised

| -Formal committee

ﬂ -Two readers, independent of author

' -Record defects, don’t argue about repairs
-Declined preparation time

-Defined rate of reading

-Defined pass criteria

Generates statistics

-Defects found in each module
-Defects found per K lines
-Defects found at each inspection
-Estimate efficiency of detection
-Estimate remaining defects/KLOC

FAGAN INSPECTION TEAM

‘Distributes material
Schedules meeting
Chairs meeting
Writes report
Chases rework
Decides pass/fail

Moderator

Read maternal / \

Readers » Secretary | Records defects

Spot defects \ /

Author

| Listens
Reworks material

Testing after development

......

- *Acceptance testing

- Completed system Vs requirements of real user

| Alpha test

- User and developer test system using real data

. *Beta test

- Release of product to a section of the market for real use

- «Installation testing

- Tests to check on the installation process

*During use

-Using spare capacity to do additional automatic testing

SOFTWARE COST AND SCHEDULE

l_ln
TEWLT.

Project problems:

Cost estimation difficult

- main cost is of skilled effort
- “90%” syndrome

- “gutless estimation”

- effort oo size

- How to estimate size?

Schedule estimation difficult

- “90%” syndrome
- “schedules </ effort 2

- How to estimate effort?
-“Putting more people on a late project makes it later!”

- Q: How does a project get 1 year behind schedule?
A: One day at a time!

Planning s/W development is NOT TRIVIAL

“90%" syndrome

The first 90% of the project consumes the first 90% of the
budget, the remaining 10% of the project consumes the
remaining 90% of the budget”

-]

~——

N 'v‘

Late

Scheduling Problems

I-IA
TEWLT.

s
.

. S : 1 |
p >,

fM“\@:"_ i 2%

Managers find scheduling increasingly difficult.
Large “software projects are often:

\o Over budget.

m@ﬁkuﬁ

Medul: AMD
Skde 5

/ Bad Quality Software \

Software is all too frequently:

« unrcliable I|I|| ||
1L

« unsuited to the user's needs.
\ | metkit

\ Module AMD
et B Shde 4

—

Goal/Question/Metric (GQM)

L C1 G

Evaluate new
GOAL ' CASE tool X

Who is What are the What is the quality
of X?

QUESTION using X? productivity im N
Number

| Pro i : o 7

. portion Average y .00 Function Number
| METRIC. of years e © pointsper of defects of defects
designers experience month in X in products

Basili VR, Rombach HD, ‘The TAME project: Towards improvement-oriented
software environments’, IEEE Trans Softw Eng 14(6), 1988, 758-773

Aplidguimatrkalpgoml

Cost, Schedule, Quality

......

Managing any project is a juggling act:

| Cost -Resources are always finite

-Plant, raw materials, effort
-Job must be done within budget

Schedule |-Time is limited
-Delivery dates, market opportunities
-Job must be done by deadline

Quality -Nothing is ever perfect
-Reliability, functionality, shininess

-Product must be good enough (“fit for
purpose’)

' Deliver adequate quality, on time, within budget

SEI - Capablllty Maturity Model

......

» CMM was developed by Software Engineering Institute and it
IS a strategy to improve software quality by improving the
process by which software is developed. The five levels of
CMM and their characteristics are given below:

Maturity Level

Characterization

Maturity Level 1 (Initial)

Adhoc process: Cost, schedule and quality
are unpredictable

Maturity Level 2 (Repeatable)

Basic Project Management: Planning and
tracking can be repeated

Maturity Level 3 (Defined)

Process Definition: The process is stable
and repeatable

Maturity Level 4 (Managed)

Process measurement: The process is
measured and operates within measured
limits

Maturity Level 5 (Optimizing)

Process Control: The focus is on
continuous process improvement

Use Factor ‘Criteria
D Communicativeness
Usability Accuracy
Product Consistency
operation Reliability
Device efficiency -
Efficiency Accessability
Completeness .
Reusability Metr ICS
Structuredness -
Maintainability Conciseness
Product
revision Device independence :
Portabilit
. Legability -
Testability Self-descriptiveness |
Traceability - -

1SO 9126: Software Product Evaluation (1)

......

Quality characteristics and guidelines for their use

The chosen characteristics are:
Functionality
Reliability
Usability
Efficiency
Maintainability
Portability

- Each 1s defined as ‘a set of attributes that bear on

¢.g. Reliability 1s ‘a set of attributes that bear on the capability of
- software to maintain its level of performance under stated
- conditions for a stated period of time.’

1SO 9126: Software Product Evaluation (2)

The evaluation process model

Stated or implied needs
1SO 9126 & other technical info.

|
!

Quality
requirement

definition

Quality requirement

Managerial requirement

specification
R 'y)
Rating level Assessment
Metric Selection citeria
delinition definition
' Products or
intermediate
Software products
deviopment :
l J Measured
value
Measurement 1 y
Rated level
Rating i l ?

Assessment

Requirement
definition

4

Preparation

|
Evaluation

Result
(acceptable or
unacceplable)

— =

The Cleanroom Approach (1)

......

» The Cleanroom process was originally
developed by Harlan Mills from IBM
Fellow Department.

H . The name Cleanroom was chosen to evoke

the cleanrooms used In the electronics

Industry to prevent the introduction of

defects during the fabrication of
semiconductors.

The Cleanroom Approach (2)

=]

......

» The Cleanroom software engineering
process Is a software development
~process Intended to produce software
e with a certifiable level of reliability.
 The focus of the Cleanroom process
IS on defect prevention, rather than
defect removal.

The Cleanroom Approach (3)

......

The first two principles of the Cleanroom process
are.

- Software development based on formal
methods

- Incremental implementation under statistical
quality control: The quality of each
Increment I1s measured against pre-
established standards to verify that the
development process Is proceeding
acceptably.

¢

The Cleanroom Approach (4)

......

The third principle of the Cleanroom process Is:

- Statistically sound testing: Based on the
formal specification, a representative subset
of software Input/output trajectories Is
selected and tested. This sample Is then
statistically analyzed to produce an estimate
of the reliability of the software, and a level
of confidence in that estimate.

Software Engineering Assessment

“You can’t control what you can’t measure.”

EWaT.

Tom De Marco: “Controlling Software Projects™

: - “If You Can't Measure It, You Can't Manage It”

@1 Peter Drucker !

v iStart of test defect density v

[w Start of test defects [w

v
v
v
v
v

End of test defect density

End af test defects

End of test Falure rate
End of test MTTF
End of test MTEI

End of test reliability

End of test availability

v Failure rate at next major releaze

[w MTTF at nest major releaze
v MTBI at next major releaze
v Relability at next major release

v Aevailability at nest releaze

v Awerage failure rate

[w Average MTTE
v Awverage MTEI
v Awverage reliability

v Average availability

Software Reliability Engineering

Determine Reliability Develop . -y . .
{ Objective ’ Operational Profile L4 A rel Iabl I Ity ObJeCtlve

IS the specification of

T the reliability goal of
M a product from the
Collect Failure Data customer viewpoint.
Apply Sﬂfm:ru Eeliability ’ The Operatlonal prOfIIe
Contine Tools Is a set of disjoint
. v alternatives of system
O ettty Models operational scenarios
- and their associated
Use Software Reliability Models prObabl lities of

to Calculate Current Reliability

Reliability occurrence.
T » Reliability modeling is
m—— an essential element of
¥ the reliability
Validate Reliability in the Field eStI matlon proceSS.
v

[Feedbhack to Mext Release

Developing an operational profile

......

Developing an operational profile for a system
Involves one or more of the following five

steps:

| 1. Find the customer profile / User Profile

ol _ ! i

lfﬂ 2. Establish the user profile / Systememods \

- . Profile

b 3. Define the system-mode 7
‘ - Functional Profile
| prOfI Ie / # Functions , Environ. Variable\
‘ . . 'Initiz%l List , Final Function List
| 4. Determine the functional Explt/ I, Qe Pobs

| p rOfi I e Operational Profile
f . . * Divide Exec. into runs , Partition input space
\ 5 . D ete rm | n e th e O pe r' atl O n al * Identify input space ~, Occurrence Probabilities

profile itself / 4

Test Selection

Statistical testing

......

Testing software for reliability rather than fault
detection.

Test data selection should follow the predicted usage
profile for the software.

| *Measuring the number of errors allows the reliability
of the software to be predicted.

- *An acceptable level of reliability should be specified
and the software tested and amended until that level
- of reliability is reached.

Statistical testing procedure

| £

......

*Determine operational profile of the
software.

*Generate a set of data corresponding to this
profile.

*Apply tests, measuring amount of execution
time between each failure.

 After a statistically valid number of tests

have been executed, reliability can be
meas<tired

Statistical testing difficulties

=i

......

*Uncertainty In the operational profile

*This Is a particular problem for new systems with no
operational history. Less of a problem for replacement systems.

*High costs of generating the operational profile

Costs are very dependent on what usage information is
collected by the organisation which requires the profile .

oStatistical uncertainty when high reliability is
- specified

Difficult to estimate level of confidence in operational profile
*Usage pattern of software may change with time.

Operational profile generation

......

 Should be generated automatically whenever
possible.

« Automatic profile generation is difficult for
Interactive systems.

* May be straightforward for ‘normal’ input but
it 1s difficult to predict ‘unlikely’ mnputs and to
create test data for them.

¢

" Achieving Software Reliability: diverse sources
- of information

......

"1 Personnel experience/skill

software
Quality of tools/techniques

\A

) erification argume
/JJ'Use of certain techniques ~X

Structural information

| Measures

\
|
|

ﬂ' Test results ...
| |Resources Processes Products
- | PEOPLE FORMAL DEVELOPMENT | DOCUMENTS
- [TooLs DESIGN TEST PLANS
| TECHNIQUES TEST PROOFS
| STANDARDS REVIEW MEETINGS MEETING MINUTES
' | QUALITY PLANS

Products, Processes, and Resources

=N

......

R

Resources » Processes » Products

.+ Resource: an item which Is Input to a process
@J - people, hardware, software, etc.
 » Process: a software related activity or event
- testing, designing, coding,
* Product: an object which results from a process

- test plane, specification and design documents, source and
object code, minutes of meetings, etc.

Achieving sottware reliabllity:
diverse approaches

......

C

High
quality
software

Fault Fault Fault
avoidance removal tolerance

Formal methods N-version programming

Object oriented design Black box testing
. Structured J White box testing Rgcovery bL(.)CkS
rror maskin
design/analysis _ _ 9

Statistical QC
Measurement

WHY USE FAULT TOLERANCE

......

~ -Avoidance and Removal never perfect
| -Residual faults always possible
©| -Must prevent residual faults causing failure

. -Only way to achieve ultra-reliability(?)

SOFTWARE FAULT TOLERANCE
PROBLEMS

Versions / blocks
do not fail
independently
e Difficulties for
one team are
difficulties for
other
e Same nmustakes
e Specification
faults
e Specification
faults affect all
versions /

blocks

-l

BUT

Significant
improvement in
reliability usually
achieved

Shown by experiment

k 4

Module 1

'< Module 2

'{ Module 3

Masking: the use of sufficient redundancy may
allow recovery without explicit error
detection.
http://www.imm.dtu.dk/English/Teaching/IMM%620Courses.aspx?coursecode=02228

Checkpointing - Definition
A checkpoint is a snapshot of entire state of the process at the

moment it was taken
— all information needed to restart the process from that point

ﬁ Checkpoint saved on stable storage of sufficient reliability

— Most commonly used - Disks: can hold data even if power is interrupted
(but no physical damage to disk); can hold enormous quantities of data

very cheaply

e Checkpoints can be very large - tens or hundreds of megabytes

— RAM with a battery backup is also used as stable storage
— No medium is perfectly reliable - reliability must be sufficiently high for

the application at hand

\ http://www.imm.dtu.dk/English/Teaching/IMM%20Courses.aspx?coursecode=02228

Example: Airbus 330/340
Fight Control System

R A ae) ks

T oo

(Sl * |
T RN

\“.\.'\ o,m ”“a ‘sl

.
0
2
0
iy
70
0

Advantages of “fly-by-wire”

e Pilot workload reduction

— The fly-by-wire system provides a more usable interface and takes over
some computations that previously would have to be carried out by the

pilots.

e Airframe safety
— By mediating the control commands, the system can ensure that the

pilot cannot put the aircraft into a state that stresses the airframe or

stalls the aircraft.

e Weight reduction
— By reducing the mechanical linkages, a significant amount of weight

(and hence fuel) is saved.
http://www.imm.dtu.dk/English/Teaching/IMM%20Courses.aspx?coursecode=02228

Fault tolerance

'.Im
TEWaTe

e Fly-by-wire systems must be fault tolerant as there is
no “fail-safe” state when the aircraft is in operation.

— In the Airbus, this is achieved by replicating sensors,

computers and actuators and providing “graceful
degradation” in the event of a system failure.
In a degraded state, essential facilities remain available

allowing the pilot to fly and land the plane.

http://www.imm.dtu.dk/English/Teaching/IMM%20Courses.aspx?coursecode=02228

|

Failsafe operation

Definition
— A system is failsafe if it adopts “safe” output states in the

event of failure and inability to recover.

20
o
ﬁ Notes

\ — Example of failsafe operation

e Railway signaling system: failsafe corresponds to all the lights on red

‘4 — Many systems are not failsafe
|

|

|

|

|

lI

* Fly-by-wire system in an aircraft: the only safe state is on the ground

http://www.imm.dtu.dk/English/Teaching/IMM%20Courses.aspx?coursecode=02228

Software Reliability Course - Agenda

......

Motivation

Introduction to Software Engineering
Measuring Software Reliability
Software Reliability Techniques and Tools
Experiences in Software Reliability
Software Reliability Engineering Practice
Lessons Learned

Background Literature

e S A e A o

3. Measuring Software Reliability

......

Measures of software reliability
Software measurement

Software engineering assessment
Definition of software reliability
Software reliability: measurement
Predictive measures

Reliability models

Key points (1)

......

Reliability is usually the most important
dynamic software characteristic.

Professionals should aim to produce reliable
software.

Reliability depends on the pattern of usage of
the software. Faulty software can be reliable.

Reliability requirements should be defined
guantitatively whenever possible.

Key points (2)

=

......

» There are many different reliability metrics.
The metric chosen should reflect the type of
system and the application domain.

o Statistical testing is used for reliability
assessments. Depends on using a test data set
which reflect the use of the software.

 Reliability growth models may be used to
oredict when a required level of reliability will
ne achieved.

¢

The predictor distribution of time to

failure (TTF).

Software reliability growth models yield predictor

distribution of time to failure (TTF). From this we can
derive:

- Probability of mission success

- Median TTF (sometimes Mean)
- Hazard rate (ROCOF)

- Expected no. of faults detected

- Expected further execution time required to achieve
the above.

Software Measurement

......

 Perfection cannot be guaranteed
- Proof is fallible
- “Good practice” may not be good enough
| - “No faults found” does not mean “No faults
Ho e
« Must measure quality
- measure dependability dynamically
- under realistic conditions
- collect data

Definition of software reliability

......

« The reliability of a software item is the probability

that the system of which it is part will operate, without
failure due to the activation of a fault in the software,
under given conditions for a given time interval.

- Probability: Subjective degree of belief

Failure: Departure of system behaviour from what is
required

Fault: Design defect due to human error
Conditions: Defines “mode of use” of software
Time: “Execution time” (measure of software use)

Software reliability measurement

......

 Software reliability measurement is always a
prediction problem: how is the software likely to
behave from now given its past record of failures.

« We can predict future failures well if we have
observed past failures frequently.

 This does not help us with high reliability
requirements. How reliable Is a system which has not
failed for 10,000 hours of use?

« The system requirement for the A330 is MTTF of 10°
flying hours. The software requirement is higher. How
can we certify this system?

Prediction versus estimation (1)

......

» The major difference between software
reliability prediction and software reliability
estimation Is that predictions are performed

npased on historical data while estimations are

pased on collected data.

 Predictions, by their nature, will almost
certainly be less accurate than estimations.
However, they are useful for improving the
software reliability during the development
process.

Prediction versus estimation (2)

......

* |f the organization waits until collected data is
available (normally during testing), it will
generally be too late to make substantial
Improvements In software reliability.

» The predictions should be performed
iteratively during each phase of the life cycle
and as collected data becomes available the
predictions should be refined to represent the
software product at hand.

Predictive measures

''''''
......

 Predictive measures invariably require a
prediction system.

* A prediction system consists of a mathematical
1 model, together with a set of procedures for
M determining unknown parameters, and
Interpreting results. The procedures are
stochastic.

The model alone is insufficient; using the
same model will yield different results Iif
we use different prediction procedures.

Reliability Measurement Goal

......

 Reliability measurement is a set of mathematical
techniques that can be used to estimate and predict the
reliability behavior of software during its development

and operation.

d ° The primary goal of software reliability modeling is to
' answer the following question:

“Given a system, what is the probability that it will
fail in a given time interval, or, what is the
expected duration between successive failures?”

Software reliability predictions

......

« Software reliability prediction is performed at each phase of
the software development process up to software system test.

 Software reliability predictions are made during the software
development phases that precede software system test, and are
| available in time to feed back into the software development
E] process. The predictions are based on measurable
? characteristics of the software development process and the
products produced by that process.

Fault Content

L 2

Historical o Fredict . _
and hetric Predict Initial Srowth _| Estimated time

— — — . ——— A —» »
current Walles Failure Rate (0 hodel and resources
data Parameters

Caollect Data -+ lIse Metrics

Probabilistic modelling

......

Why are statistical methods necessary?
Why reliability?
What Is the nature of the failure process?
... Of the debugging process?
How can we measure, predict?

Why do we want to measure it anyway? Some potential benefits:
- some software Is safety-critical (A330-340, Sizewell B)

- all software needs to be sufficiently reliable (warranties?
support costs? etc)

- methodology for a rational choice between SE technologies (eg
are formal methods the most cost-effective way of achieving R?)
- management tool for scheduling and monitoring software
development (is project on time?)

Finding errors: does It increase or decrease your
confidence in the software reliability?

......

“The number of errors detected by the verification process attest
to the effectiveness of the software development principles ...

Significantly enhance the probability of achieving essentially
error-free software.”

(Westinghouse commenting on their work on the Sizewell B
nuclear protection system.)

SEI CMM Model C:\Program Files\Frestimate
Demonstration Edition/demoprog.mdb
0.0

1 1.081858E-02
1.2185E-02

Failure 00

rate in

hours

0.000

Months after delivery

Refined data for software reliability models

......

e Failure time data
- List of interfailure times

* execution time between activation of
successive new faults

e Failure count data

- Count of new faults activated, and total
execution time accumulated, In successive
calendar periods

¢

Why probability?

A computer is a deterministic machine — why don’t we know when it will fail
next?

There is intrinsic uncertainty :
- about the sequence of inputs it will receive
- about where faults lie
- about the effect of attempts to remove faults

We need probability to describe such uncertainty

|

probability

Y Tn+1 N 7 Tn+2 N (___
st 2nd 3rd nth i %
g failure failure failure failure
, ; ; e oeomi ' % %
t4 ts ts tn
———
time . /,/
Past Future . ///
(observed) Now - (to be predicted) £° //
| 7
: /
P
e

I
|

|

Uncertainty Modelling

Execution trgjectory:

Input - A subset of

space,] | inputs cause
outputs

Program ‘is mapping of | into O
p: [—0

A conceptual model of the
software failure process

- as amappingp: | —0

|
|

\ Modelling type 1
uncertainty Is easiest.

Seems plausible to

assume |- encountered
purely randomly:
« Time to failure is
exponential
F(t) = Pr (T<t) = 1-eM
f(t) = F’(t) = Ae™M
R(t) = eM

How to model type 2
uncertainty: the way In
which the value of A
changes as debugging

proceeds.

Types of uncertainty

......

There Is intrinsic uncertainty about future failure
behaviour because of:

1. Uncertainty about the operational environment:
| even If we knew |- we would not know when it
3 would be encountered next
En
8 2. Uncertainty about the effect of fault-removal:
- we never know whether a fix is successful
- even If it is successful, we do not know how
much it improves overall reliability.

Models must be judged by their ability to capture both
sources of uncertainty
Frequentist for 1, but not for 2?

A conceptual model of the software failure process

......

< In summary:
¥ - debugging creates a sequence of programs
- p(1), p(2), ..
| -there is a sequence of failure subsets (1),
E
S 1(2), ...
| -these have ‘sizes’ represented by random

variables A(1), A(2), ...

- distribution of T; Is exponential with rate A(I).

Software reliability metrics

Metric Definition Formula
Reliability The probability that a given piece R(t) = P(T >1)
R(t) of software will execute without “1-F (1)
failure in a given environment for a
=1-P(T <t)

given period of time

Mean time to failure
(MTTF)

The time which is expected to
elapse between the current time and
the next failure

MTTF = [tf (t)dt
0

Median m

This term implies the point of
statistical distribution that a given
quantity is equally likely to fall
either side of

F(m) = 1/2

Rate of occurrence of
failures ROCOF A(t)

The current rate at which failures
are occurring

MO=FO)/R()

Note: F(t) is called distribution function of the random variable T;
its probability density function is f(t)=F’(t)

Reliability metrics

......

Mean time to failure
Measure of the time between observed failures
*MTTF of 500 means that the time between failures 1s 500

time units
*Relevant for system with long transactions e.g. CAD

il systems

«Availability
*Measure of how likely the system is available for use. Takes

repair/restart time into account
Availability of 0.998 means software is available for 998

out of 1000 time units
*Relevant for continuously running systems e.g. telephone

switching systems

Software reliability

......

«Cannot be defined objectively

Reliability measurements which are quoted out of context are not
meaningful

*Requires operational profile for its definitions

*Requires operational profile defines the expected pattern of
software usage

*Must consider fault consequences

*Not all faults are equally serious. System is perceived as
more unreliable if there are more serious faults.

Reliability economics

......

*Because of very high costs of reliability
achievement, it may be more cost effective to
accept unreliability and pay for failure cost.

*However, this depends on social and political

- factors. A reputation for unreliable products may

lose future business.

*Depends on system type — for business systems
In particular, modest reliability may be adequate.

Reliability measurement

......

*Measure the number of system failure for a given
number of system inputs

*Used to compute POFOD

*Measure the time (or number of transactions) between
system failures

*Used to compute ROCOF and MTTF

Measure the time to restart after failure
*Used to compute AVAIL

Reliability growth (faults found, failure rate)

Faults
Found

Failure
Rate

Time —>

Delivery OD.eratlon &
maintenance

-

Record faults
detected over
operating time.
Analyse the pattern
and predict future
behaviour.

Monitor failure
rate during test
and trial.

Deliver when pre-

defined target
value is reached

Time ————p

Reliability growth (failure rate)
Reliability growth

T “Useful life” “Wear-out”

i g i) Hardware
Failure “Constant reliability” ! Rt AT o
Rate =;

| Time ——p
T \Bum-out” L “Useful life”
Software

: Continual growth
Failure E “Reliability growth” of reliability with
Rate 5 debugging

Time -~

Random-step reliability growth

LC1 08
Note different reliability
improvements]
Reliability Fault repair adds new fault and decreases
(ROCOF) . reliability (increases ROCOF)

tl 2 13 i (5

Bathtub curve

Revised bathtub curve for software
reliability
lestfCebug Usetul Lite Obsclescence

Failure Rate

Time

http://www.ece.cmu.edu/~koopman/des_s99/sw_reliability/

Reliability prediction

Relinbality
¢ = Measured reliability
Fitted reliagbility
mode] curve
Required
reliability

Estimuoted times
of reliability
achivement

Software failure rate - example

......

16 POSIX OS Versions

from Ten Yendors

Nomnalized Failure Rate of 15 05 Yersions

QNX 4.27]

NetBSD 1.3

Lynx0S 2.4.0]

CTNUX 20.18]

IRIX5.3] |

IRIX 6.2

HP-UX A.09.05 |

HP-UX B.10.20 |

FreeBSD2.2.5|

Digital Unix 3.2 |

Digital Unix 4.0 |

AlX 4.1

QNX 4.24

0%

T i i
2% 10% 15% 20%

Robustness Failure Rate

OAL 4 1

m Digital Unix 4.0
E Digital Unix 3.2
OFreeBsD 225
OHP-UXEBE.10.20
OHP-UX A09 0%
EIREE 2
EIRES 3
OLMNUKXZ0DANE
OLymxOs 240
OMNetEzD 1.3

O QX 4 24

O kX 4 22
BSun0S 55
BSun0s 4.1.3

http://www.ece.cmu.edu/~koopman/des_s99/sw_reliability/

Reliability improvement

=G

......

Reliability Is improved when software faults
which occur in the most frequently used parts
of the software are removed.

Removing x% of software faults will not
necessarily lead to an x% reliability
Improvement.

In a study, removing 60% of software defects
actually led to a 3% reliability improvement.

Removing faults with serious consequences Is
the most important objective.

Some parametric software reliability
models

| Remember that the problem is | Noticethat:
one of prediction. This entails | Pisaster can strike at
: - . any (or all) of these
the following triad: -

1. The model itself, which givesa |+A “good” model seems

complete probability necessary for good
specification of the process (eg | Prediction, butis not
¢l the joint distribution of {T;}, sufficient

with unknown parameters, say) | . All models are “wrong™

] but some are more
2. An inference procedure for the (.
wrong than others!)

unknown parameters Of 1 based ° Various So|utions to 2’

on realisations (data) t;, t,, ..., t, [eg ML estimation, eg
3. A prediction procedure which Bayesian posterior

combines 1 and 2 to make distribution
predictions about future - ditto for 3, eg
behaviour substitution of ML ests.,

eg Bayesian predictive
Distributions.

| This assumes:

......

t, L, 15 ,... are independent random
variables
Type 1 uncertainty: t; IS

exponentially dlstrlbuted parameter

Type 2 uncertainty: 4,=(N-i1+1)¢,
where N is the initial number of
faults (finite) and ¢ Is contribution
to overall fatlure rate of each fault.
No fault introduction while
correcting detected faults: each
activated fault i1s corrected before
new executions

Inference by ML, prediction via
‘plug-1n’ rule.

R(t)=exp(-At;) Is the reliability
functlon

e & & &

e

-

Jelinski-Moranda [JM] model (1)

tyta

ts

L4

Jelinski-Moranda [JM] model (2)

The JM model assumes that {t;, k=1,n} are the realisations of
the random varlables Tk with exponential probability density
functions:

- jxk (u)du

fk (0 = 4. (z,‘)e 0 - (]\J _k+ 1)¢e-(N-—k+l)¢t (1)
where

A (1) =(N-k+1)¢ = const. @)

When our observation of the reliability growth(debugging)
begins, the program contains N faults. Removal of a fault occurs
whenever a failure occurs, and at each event the rate of
occurrence of failures is reduced by an amount ¢. Thus, ¢ can be
taken to represent the size of a fault.

) Jelinski-Moranda [JM] model (3)

!
When {t;, k=1,n} are the observed data, the current reliability is

Rk(t) o= e—xk(t) = e'—(N _k+l)¢t (3) |

EEE—
. A : . < "
. ¥ g W
e % P =
SR e e

The unknown parameters of the model, N and ¢, are estimated
by maximum likelithood method .

|
\ For the series of “n” recorded faults the likelihood is:

L:-gfk(tk) @)

} 3 Jelinski-Moranda [JM] model (4)

{

and further (5),

: In Lzlnﬁ £)=‘Zln[fk(tk)]=i[ln(N-—k+1)]+nln¢f¢zn:[(N-k+1)tk]

k=]

S A

k=1

| \ wherex, =§:t,‘ Va =ix,‘
k=1

|) .
and the mathematical relation:

e sy = 3 =10 ©6)
k=1

Jellnskl Moranda [JM] model (5)

N and ¢, are estimated usmg the following derivative equations:

olnL . /
== "
ON Z:N k+1 i

OlnL n €))
=0=—-y -(N-n)x,
o¢ ¢
and using the notation N = a-1, we obtain:
Z 1 R n =0
Xn

| : L
| with the restrictions:

\\. NeN >0 N=>n

| Why is JM always optimistic ? (1)

In virtually all data we have analysed, JM/Musa model
gives answers which are too optimistic. This 1s the
result of assuming all faults are 'equal’ when in fact they

|
’)
'ﬂ are not:

| . If faults have different sizes (rates) and we incorrectly
| k assume they are equal, what kind of errors should we

!
- see?

Why 1s JM always optimistic ? (2)

failure 3
ne \

line fited W points '

‘line fined v all points

failure number

vertical intercept is estimate of N¢: we should see
this decreasing overall

(-1)x slope is ¢: we should also see this decreasing

overall

| Why is JM always optimistic ? (3)
I L O3 G

Example: Musa System 1 data

- N 0
20 00350 1.35
25 00300 0.85
30 00317 0.99
35 00252 0.68
40 .00196 0.41
45 00189 0.39
50 0.32

00172

similar results on other data sets

Criticisms of [JM] model

| £

......

« Foundational assumptions unrealistic: true fault
rates differ by orders of magnitude.

« Parameter estimates of N (by ML) have poor
properties:

¢ - often seriously underestimate N (even N! —
| factorial!)

- sometimes goes to infinite (essentially) when no
evidence of reliability growth in the data)

» Shall show reliability predictions are poor:
usually grossly “optimistic™.

Musa model [M

=i

......

Assumptions similar to the Jelinski-Moranda
model.

Parameters definition: M, = number of faults in the
software; N, = number of failures; B = fault
reduction factor: number of faults / number of
failures; C = compression factor (execution time In
operation / in test); ¢ = fault manifestation rate.

A1) =B C ¢ (Ng-1+1)
N(t) = Ng[1 - exp (-B C ¢ t)] = number of failures
observed at t (execution time)

Littlewood [L] Model

......

« The main hypotheses are the following:
- At a failure, the fault is removed with certainty

- Faults manifest themselves at times that are independently
exponentially distributed

- The rates of these faults come from I'(a, 3) distribution

 Notations and relations:
- N is the initial number of faults
- ¢, represents the (random variable) rate associated with fault
| (in arbitrary labelling).
(N —1i +1)“
- A=+ ot ...+ Oy ROCOF is A(t) =
L+ Zt +1

Littlewood (L) Model

This model(Littlewood, 1981), is an attempt to answer the
criticism of JM . The major drawback of JM is that it treats
debugging as a deterministic process: each fix 1s effective with
certainty and all fixes have the same effect on the reliability. In
detail, the model assumes, as before

flti| Ax = Ak) = he ™

where the random variable { Ay} represent the successive ROCOFs
arising from the gradual elimination of faults. Here
N-k+!

A= DTt T Dy = Z D;
j=1

(1)

where is the initial number of faults and @®; represents
the(random variable) rate associated with fault j(in arbitrary
labelling).

The initial rates @,,....0Oy are assumed to be independent,
identically distributed gamma(c,f3).

Ty
T M 3)

o S S ek de S S) ek s

.‘.(-l‘r-\):!“l‘l“.l‘. n;»h : INGY
= o g DCJ oo
£363°C T@mTOOrcGY £3 fonangc
o e e w ulle s 03%8%?5"!:\5}5"":6

Gy ey n;»h : NG
BRrCOoOTO0 00T

f(¢) = gamma(a., B) =

.o
e e e e T

When the program has executed for a total time x, use of Bayes'
theorem shows that the remaining rates are independent
| identically distributed gamma(c,+x) random variables.

i1

AP e
=T T

and MTTF :

T Bttt
HT= |tilx)dt= ,
OI o [(N-k+Do-1] (1)

which does exist under the condition:

(N-k+1Da-1>0 12

The median is:

TS
TS

- In2
= (P+ xn)[em-n)a = 1] (13)

T

\.A_,
3T Ex 42

3T Ex 42

The restrictions for N, o, 3 are :

NeN,a>0,>0 ,N=>n (14)

TN

TOTCTTITOTOOTO O (1 0L %

TN

TOTCTTITOTOOTO O (1 0L %

i
i

In
A
<
o

‘;‘,:ﬂ
=0
Y
<0

In
A
<
o

‘;‘,:ﬂ
=0
Y
<0

The ML

InL= i[ln(N-k+1)]-(a+l)iln([3+xk)+nlna +Nalnp-(N-n)aln(B+x,) (15)
k=1 .

k=1

and the equations:

ol _ D NIn-(N-n)InB +x,)- 3 In(B+xy) = 0

o« k=1

élnL o o 2, 1
——=N—-(N- -(a+1 =0
R S Y, , (16)
6-lnL= fi B +z“:___l___=0 '

ON B+xn (i N-k+1

Q

reduced to a system of 2 equations. Using the following
parameters N, a, B we can estimate the following functions:

| fan(8), Rosa (1), Anea (1), h(X), Taer.

[L] - LS Estimates

......

The LSE are those N, a, 3 chosen to minimize

ﬂNﬂJﬂZE{K— f ity }.

- (N-i+Da-1

o
l?] The system of equations to be solved in order to find
- LS estimates is:

(n
|

| Z /B+t|1

\ ~ (N — |+1)a 1 Z[(N i+ -1
|) : X (B+1.,) N (18+ti—1)
| ;[(N—i+1)a—l]2_izﬂ:[(N i+1)a -1

L X (IN=1+D)(pB+t) (N-1+)(p+t 1)
.Zzl: [(N —i+D)a 1] Z [(N-i+D)a-1]

: :
: v
étg Kmernss T lmemere ><enan T ----- > ;:;E
?'g | L | ?g‘
3 0 i faults now next :
& femoved failure :
S in (0, 1) . E
50 fime S fCJ
© Key idea: :

IYOT T v
IYOT T v

« faults removed in (0, T) will tend to be bigger than
the ones remaining

”

- a "law of diminishing returns”

Littlewood-Verrall [LV] Model

......

Stochastic relationship between the successive failure

rates. During correction it is possible to remove a fault
or to Introduce a new one.

Randomness of inputs: f(t:| A;) = A; exp(- At;), the
probability density function for A, is I'(a, ‘¥(1)), where
‘(1) captures the programming difficulty and the
programmer skills. Usually, (1) = B+, I.

Parameters: o, By, By el “:3
Relations: ZZZ?;Z\ e o 02
. 0,0160 c2 |3 | 60 | 150
|(t) (X,/(t'l'\P()) u::s—\\ C3 |4 | 80 | 100
MTTF, = P(i)/(o-1). wome el T
T

[LV] — LS estimates

......

The LSE'’s are obtained by the minimization of:

S(a, B,) = i(xi - E{Xi})z-

In the case of linear assumptions for (i), the
following system of equations is necessary to be

solved:

> w0
S—S:a—l— L1 =0,
¢ > Xy (i)

i=1

B _$y DA fn(nd

5 _diy s n(n+1)ﬂ1_ﬂ2§i2_o
=" a-1) a-1

Keiller-Littlewood [KL]

......

[KL] is similar to [LV], except that reliability growth is
Induced via the shape parameter of gamma distribution for the
rates:

ACI R ACI i P ¥
I'(y (1))

F(hy) =

(i) = ¢(i,a)= — 7

o+, 1

Predictions of the unknown parameters can be obtained
by Maximum Likelthood approach.

The Poisson model (time related)

......

* The main hypotheses are the following:
1. N(0)=0

2. The occurrence of an fault is independent of
previous faults; the future Is independent of the
past

3. Not more than one fault can occur In the time
Interval (t, t+dt); simultaneous events are
‘impossible’

4. The rate of occurrence of failures (ROCOF) is
i P[1 event in (t,t +dt)]
dt—0 dt

= A1)

The NHPP distribution

......

* The occurrence of faults are described by the
non-homogeneous (NHPP) distribution:

P[N(t) =n]= %t!)nem@

where m(t) I1s the mean (expected) number of
faults occurring in the interval (O, t):

m(t) = j/l(s)ds

~ Goel and Okumoto [GO]

GO model i1s a NHPP
variant of JM model.

ROCOF Is - -
M) = o exp(-4t), E \

where t is total elapsed time L+ — [e
since debugging began, p is e e
the final number of faults

that can be detected by the rocor

testing process, and ¢ Is a
constant of proportionality,

can be interpreted as the o

failure occurrence rate per e
fault.

. . . ROCOF plots for various models: (a) JM model; (b) NHPP models; (c) LV
Prediction involves ML ’ and L models.

estimation of u and ¢, then
substitution.

Goel-Okumoto [GO] — Assumptions (1)

......

*The software Is operated In a similar manner
as the anticipated operational usage.

*The number of errors (f,, ,, ..., f.)) detected In
each of the respective time intervals (0, t,), (t,,
), ...(t,.1, t,) are independent for any finite
collection of increasing sequence of times.

*Every error has the same chance of being
detected and Is of the same severity as any
other error.

Goel-Okumoto [GO] — Assumptions(2)

......

*The cumulative number of errors detected at any
time t, N(t), follows a Poisson distribution with mean
m(t). The mean m(t) is such that the expected number
of error occurrences for any time (t, t+At) Is
proportional to the expected number of undetected

errors at time t.

*The expected cumulative number of errors function
m(t) 1s assumed to be a bounded, nondecreasing
~ function of t with m(t)=0, t=0; m(t) = a, t goes to
- Infinity: m(t)=a(1-exp(-bt)), b Is a constant of
- proportionality.

Goel and Okumoto model

This is a NHPP version of JM (although GO did not
seem to realise this! [Goel and Okumoto 1979))

SRR S B R B R DO

SRR S B R B R DO

3

3

-
(& |
-
| &]

 ROCOFis At) = pge-¢t wheretis total elapsed
time since debugging began

':zé-t 'i"cuérb (J‘
b s 1'ulr s = o8
OTo0 0

« prediction involves ML estimation of i and ¢, then
substitution |

5 ”&#&*‘S‘E‘Tc‘s’éﬁ-ﬂs
5 ”&#&*‘S‘E‘Tc‘s’éﬁ-ﬂs

|GO] — ML estimates

......

- Let £.=N(t)-N(t_,), Pr{N(t)=n}=m(t)"exp(-m(t))/n!. The likelihood
- function is:
[m(t) m(tl 1)] exp{m(tl 1) m(t)}
L(f, f,,....f)= H f

f] The MLEs are the solutions of a system based on the following
- relations:]
|

| f
| olnL 2F

O: — =1 .]__e—btm |
oa a ()

8 |n L i f t e —ti_le_bti—l
o bt

—bt
—ate
—bt m
i= t—€

| Duane model

Originally a model for hardware reliability growth.
Duane [Duane 1964] claims to have observed that a plot
. of cumulative number of failures against elapsed time on
" log-log paper was linear. This empirical observation

.| about the ROCOF was taken up by Crow [Crow 1977]
with the addition of an NHPP assumption.

- ROCOF = oftf! (decreasing if pB<1, constant if
/ P=1, otherwise increasing)

but these are available in closed form so

no need for search routine unlike previous

. « prediction by substitution of ML estimates,
/ NHPPs

O TH S ER TR eaYS

e aee

Musa and Okumoto model [Musa and
Okumoto 1984]

This is an attempt take account of faults having different
rates, i.e. later fixes have less effect than earlier ones.

. ROCOFis o/(B+t)

« prediction by substitution of ML estimates of
parameters

e aee

O TF S ER TR eaYS

Littlewood NHPP model

NHPP version of L
* ROCOF is A1) = paf®(B+t)o+!

« prediction by substitution of ML estimates of
parameters

- -
o x
i i
0 €
i i
¥ e
0 :0
-d 0
& v
¥ 4
: :
20)
o *
0 0
s =
) <
i)
0 0
0 A0
 y =
= -
o o
it it
b *
i vd
. i
0 0
o -
0 0

| NHPP — S Shaped Model

|
L3 G

1.00

~» Failure intensity:
| [A1) = a b? t exp(-bt) 0.75
" « Parameters to be estimated: a, b
~« Cumulative number of failures:
M(t)=a[1-(1+bt)exp(-bt)]

P Ve
' | ! |
ﬂ O'OOO 25 50 75 100
r

240

0.50

0.25

= ok ok o=k o=k B B B R R L

K B O 0O

=]
—+
(=

1 3 5 7 9 1113151719 21 23 25 27 29 31 33 35

Software Reliability Course - Agenda

......

Motivation

Introduction to Software Engineering
Measuring Software Reliability

Software Reliability Techniques and Tools
Experiences in Software Reliability
Software Reliability Engineering Practice
Lessons Learnt

Background Literature

e S A e A o

4. Software Reliability Techniques and Tools

=G

......

» Kolmogorov-Smirnov (KS) Test
* The U-plot

* The Y-plot

* The Prequential Likelihood Ratio

» The Laplace test, Running Average, TTT,
MIL HD Test, Noise

|« Recalibration
« Combination of predictions

Kolmogorov-Smirnov (KS) Statistics

......

e Uses the absolute vertical distance between two
CDFs to measure goodness of fit.

» Depends on the fact that:

. D, = SUP|E,(x)- F,(¥)
where F, is a kﬁcx):/;n, continuous CDF, and F,
Is the sample CDF, is distribution free.
- (CDF — Cumulative Distribution Function)

 « D_is independent on F,

Level of a significance for D, = sup|F, (x) = Fox)|

Sample
size J

C t I " a =020 a=0.10 « = 005 « =001
ritiCa 1| 05000 09500 - - 0.9750 0.9950
V al Lues 2| 06838 0.7764 0.8419 0.9293
3| 05648 0.6360 0.7076 0.8290
4| 04927 0.5652 0.6239 0.7342
fo r K S _ s| 0447 0.5095 0.5633 0.6685
6| 04104 0.4680 0.5193 0.6166
_ 7 0.3815 0.4361 0.4834 0.5758
test: " 8| 03583 0.4096 0.4543 0.5418

9| 03391 03875 0.4300 05133 .
10 03226 0.3687 0.4093 " 0.4889
1 8.3083 03524 03912 0.4677
: 12| 02958 03382 03754 0.4491
If D, Is less than 13| 02847 03255 03614 04325
: 14| 02748 03142 03489 04176
the ?Sta_b“Shed 15| 02659 0.3040 03376 0.4042
criteria, the 16| 02578 02947 03273 03920
- 17| 02504 02863 03180 03809
model fits the 18| 02436 02785 0.3094 0.3706
data 19 02374 02714 03014 03612
20| 02316 0.2647 02941 03524
25| 02079 02377 02640 03166
adequately. 30| 0.1903 02176 02417 02899
35| 01766 02019 02243 02690

Over 35 107/ /n 122/ /n 1.36//n

1.63//n

The u-plot (1)

The “u-plot” can be used to assess the
predictive quality of a model

 Given a predictor, F (), that estimates the
. probability that the time to the next failure Is
| lessthant. Consider the sequence

U = Ifi (ti)
where each u; Is a probability integral

transform of the observed t; using the
previously calculated predictor F based upon

i, L, ...ty

The u-plot (2)

=i

......

 Ifeach F were identical to the true F,

L

then the u; would be realizations of
Independent random variables with a

niform distribution in [0,1].

* The simplest question to answer Is
whether their distribution is close to U
by plotting their sample cdf: we call this

t

he u-plot.

How to draw a u-plot

1
KS distance\ é
] | | | | |
0 1] | P P | |

.UB Ug U3 UB U4 U1 Us Uz U?

. Forn u;s, step

size is _1
n+

(here n=9)

@ N = = : 8
AATRTL L TR L3

Y-plot

To preserve the temporal information lost in producing
the bias plot, we have to perform two additional
transformations after producing the random variable u.
The transformation sequence is:

x,=-In(l1-u) (1)

Y= _ED:_X—J (2)

where n is the total number of failures observed. The cdf
of the y; is drawn, as was done for the u-plot. This y-plot
reveals temporal trends in the u;.

1981)

(Littlewood,

The y-Plot for the LV and JM models

Detecting consistent ‘bias’ and Inappropriate

‘noisiness’ in a prediction system (1)
Elﬂ

-Te

These predictions have high ’bias’ and low ’noise’

Detecting consistent ‘bias’ and Inappropriate

‘noisiness’ in a prediction system (2)

These predictions have high ’noise’ and low ’bias’

Prequential Likelihood Ratio

~~~~~~

e The pdf for k() for T, is based on observations t,, t,, ..., t; ;.
fi(t) = dF, (t)/ dt
» For one-step ahead predictions of Ty, T, ..., T, , the
prequential likelihood Is: |

PLo= ] f;(t)

i=j+1

« Two prediction systems, A and B, can be evaluated by
computing the prequential likelihood ratio:
j+n R
H fiA(ti)

PLR, =212

j+n

H fiB (t)

i=j+1

« |If PLR, approaches infinity as n approaches infinity, B is
discarded in favor of A.



| Using PLR as a device for comparing two
~_prediction systems, A and B

true

fi (t)

A .B
i) > ity

|

|
l
1



- Reliability trend analysis — Laplace test

The expression for the Laplace test factor u(k) is:

| u(ky=""Z 12k -1),k=2,..,n ]

| S,

|

| where

l 1 |

| c=—— S A B c D
& | k—1 i=1

' i = S—k

| 2

| _

‘ I

| S; =21 ;

lI j=1

n = total number of failures

| t, = interfailure time between failures k-1 and k
| s; = time of occurrence of failure 1



aplace test - Interpretation

......

This test analyses the trend of the failures. One can
extract two types of information from such a graph :
local and global changes.

When the values are positive (resp. negative), the
reliability is globally increasing (resp. decreasing).
On the other side, when the values are increasing
(resp. decreasing), we have local variations of the
reliability.

 |f U is approximately equal to zero, it indicates a lack
of trend,

 |f U Is greater than zero, the TBFs are decreasing,

-« |f U s less than zero, the TBFs are increasing.



General trend - Local trend

L L1 G
u(k
N (k)
G
L Local trend changes
0 A
B
A Reliability,
L decrease’
T Reliability
R 9growth
E
N : A : B
D MR > <
Reliability - Reliability
decrease Reliability growth decrease

< >
LOCAL TREND




Running Arithmetic Average of Time

Between Failures/Failure Counts
For time between failures data, the running arithmetic
average after the i" failure has been observed, r(i), is
given by:

i

29,

(i) == 1)

1 7

where 0, is the observed time between the (j-1)" and the
j™ failures. For failure counts data, the running arithmetic

average after the i test interval has been completed, r(i),

is given by:

2,

r(l) = j=l. (2)

1 2

where n; is the number of failures that have been

observed in the j* test interval.



TTT plot—Total Time on Test

......

*The TTT plot is basically a
scaled version of the graph

TTT Plot Trend Plot - casre_S1_tbf.xls

1.0

consisting of the points (i, T)).

0.8

*|s defined as a plot of the
points (i/n, T./T,), for 1=1, 2,
..., N

0.6

d Total Time of Test

S 04
[
(8]

S

A necessary but not sufficient
condition for this notion of
reliability growth is that the

graph of the TTT plot should ™

0.0 0.2 0.4 0.6 0.8 10

be be I OW the d i ag O n al . Scaled number of failures



The MIL-HDBK-189 Test (1)

......

The MIL-HDBK-189 trend test is a conditional statistical
test based on the power-law process:

ut)=2( 1]
a\d

where a and b are the model parameters which are positive.

If b<1 then p(t) decreases, meaning that the failures tend to
occur less frequently (and the system shows reliability
growth).

If b>1, then the system shows reliability decrease. When
b=1 the homogeneous Poisson process case Is obtained.



The MIL-HDBK-189 Test (2)
Considering the event {T, =t }, the MLE of b of a failure

 truncated power-law process Is given by

n

6 = n-1
> log(t, /T;)
i=1

~ Under the null hypothesis of b=1 it follows that 2n/b

~x2(2(n-1)). If the alternative hypothesis is two-sided,

- then the null hypothesis is rejected If

~ 2N
A 2N b <
b ,
" aa@n-1) or 72,,(2(n-1))

-~ where z () denotes the y-percentile of the chi-squared

- distribution with v degrees of freedom. For large values

~of the null hypothesis is rejected in favor of reliability
growth.



Model noise

Model noise is defined by the fﬂllawing equation:

Model Noise = Z}ti t_ tH}
i i~1

The quantity t; is the prediction for the i time between
failure made by the model.



Recalibrating Software Reliability Models

......

This method was introduced by Brocklehurst, Chan, Littlewood
& Snell (NASA-CR-166407), and can be summarized as
follows.

The relation between true distribution F;(t) of the random
variable T;, and the predicted one, Fi(t), can be represented
through a relation function G; as F;(t) = G;( Fi(t) ), where G; is
only slowly changing function with i. Since G; is not known, it
will be approximated with an estimate G* which will lead to a

new prediction: ., .
F () =G, (Fi(t))

This technique recalibrates the raw model output Fi(t) related
to the accuracy of past predictions.



Recalibration; usc u-plot analysis of past predictions to improve futurc

|

————,
- - - . . > "
: g = 2 A4
= - S . -
e =1

predictions

F ()

recalibrated
prediction

smoothed u-plot based
on predictions made

BEFORE stage i

’(E; (t) 1
“raw” prediction



.MEﬂian predictions for JM, LV, JM’, LV on data of Table 1

3000 ,

2700+

2600 -

2100 1

1800 +

1500+

1200

900+

600 -

300 4

£ 113

Predicted
medians

Lv*

Number
of failures

136

SR T R e



Combination of predictions

......

e Our previous recommendation was: ‘pick the model
which had performed best in the past, and use it for
the next prediction’.

-« This seems unduly ‘rejecting’ of models which are
ﬂ only slightly inferior to ‘the best’.
|« Why not combine predictions from different models
in some optimal way? cf pooling of ‘expert opinion’.
 For two candidate models, A and B, could take
as a ‘n F,()=wF' () +w,F’ (), w,+w, =1 than two.



' How should the weights be selected ‘optimally’?

......

 For a prediction at stage I, 1.e. of t;, let {w, } take
values that maximise the PL of the combined
predictor over previous predictions

) i1
f-:-l i.e. max [ |F,(?)
.': | Jj=1

-1
=max | [ (wF )+ WEF}B (1))
1

j:

In the case of two prediction systems.

 This Is computationally intensive, but seems to
work quite well.



How well do these work?

=G

......

Sometimes dramatic disagreement between model
predictions on the same data source.

No universally accurate model.

No way of selecting a model a priori and being
confident that it will be accurate on a particular data
source.

Remember we have a prediction triad: in principle we
could separately examine models and inference
procedures.

In fact this 1s too difficult: we are forced to examine
directly the accuracy of the different available models
on each data source and somehow decide which, if
any, Is giving accurate results.



- Reliability models In practice - examples

Table 1. Data set - SYS1 (136 inter-failure times)

{read left to right}-

Inter—failure time vs failure no :.sysl

L)

L) L) L
-

e 30. 113. 81. 115.

9. 2. 91. 112, 15.

138. 50. T7s 24, 108.

88. 670. 120. 26. 114,
325, 55. 242, 68. 422,
180. 10. 1146. 600. 15.

36. 4. 0. 8. 227.

65. 176. 58. 457. 300.

97. 263. 452. 255. 197.
193, 6. 79. 316. 1351 ;000
148. 21. 233. 134, 357.

193. 236. 31 369. 748.

0. 232. 330. 365. 1222.
543, 10. 16. 529. - 379.

44, 129. 810. 290. 300.
529, 281. 160. 828. 1011.
445, - 296. 1755. 1064, 1783.
860. 983. 707. 33, 868. 2000 |
724, 2323. 2930, 1461. 843,

12. 261. 1800. 865. 1435.

30. © 143, 108. 0. 3110.
1247. 943. 700. 875. 245.
729. 1897. . 447, 386. 446,

122, 990. 948. 1082. 22,

T3 482. 5509. 100. 10.
1071. 371. 790. 6150. 332]. 1000 |
1045. 648. 5485. 1160. 1864.
4116.

0

20

120

140



Data set: Sysl

Cumulative failures vs total elapsed time : sysl

140 T o T T o 5 T T T
120 | §
100 | i
8o |- i

3
60 |- 1
20 | * i
o 1 1 1

0 10000 20000 30000 40000 50000 GOO0O 70000 00000 90000

W,

Ly



140

v 1] 1
'J Lw
-
Q
- > 2
0 o
T 1=
e -
0 o
« i 8
= 2
d.f i
5
~ o) 41
o E -
-
~
olﬂac
h &
|
o I 1 o
> b~
o 1 |
=
B Ak 12
o 1
Q
M e LKOV
K Mv
£ 1o .Jm..u
sl
\ ; & |
©
o

3000
2000 |-
1000 |




u—plot for data set sysl

Raw Parametric
B i z ] J ¥ L ]

I 1 T [}

~ 1.0 e——1

1 P . 1

1

06 07 08 09

0.0 : - .
. 02 03 04 05

ks distance siglev

1.873824¢-01 >1%
________ M 1.095623¢-01 10-20%
1.436834e-01 2-5%




arametric

others versus JM

| Log(PLR) versus i for data set sysl

[
[

log(PLR,)
=

w0

Raw P

1

1

70

80

g0 100 110

120

130

140



Median plots for JM, LNHPP, LV, data from Table 1. Plotted here are

predicted median of T, ( based on t,,L,... ,tl,i)ngainsﬂ
L O3 GHIE) 1a L. -

3000 icted.
me 1ans

2700+

2400 -

2100 1

1800 {

12004

900 -

600+

300 -

35




u-Plois for the data of Table 1 : (2) JM, maximum deviation 0.1874; (b) LY,
maximum deviation 0.1437; (c) LNHPP, maximum deviation 0.0805

1.01
0g'
0.8
M-
05"
05
04
03
02!
04
T , BT L
00 02 04 05 08 10 00 02 04
- Ma

107

0397

0.81

0.71

0.6

05

0.4

03

0.2-

0.1

o‘ﬂ'




Prequential likelihood ratio comparison of JM, LV and

LNHPP models operating on the data of Table 1

JM and LV LNHPP and LV LNHPP and ]M
models models models

n PLR, n PLR, n PLR,
10 1.19 10 1.16 10 0.975
20 0.318 20 0.593 20 1.86

30 (. 252 30 0.759 30 3.01

40 0.096 40 0.502 40 5.23

50 0.745 50 1.83 50 2.46

60 6.50 60 7.56 60 1.16

70 0.088 70 915 70 65.34
80 0.00177 80 1.24 80 700.56
90 0.00008 90 0.66 90 8118.08
100 10.00119 100 30.85 100 25924.3




Optimistic/pessimistic
oIf u-plot is everywhere above the line of unit slope the
predictions are ‘t00 optimistic’; if they are everywhere
below the line, ‘too pessimistic’.

*Here JM Is far too optimistic, which confirms suspicion
from median plot; LV is slightly too pessimistic.

*This poor u-plot performance for JM probably explains
the poor PLR performance versus LM, LV.

*The median plot, and PLR, seem to show that there Is
little to choose between the three in the early stages, but
u-plot aggregates over the whole sequence of
predictions.



summary

L =t
......

These models seem to perform almost as well as the
best parametric models for most data sets.

They seem robust: whilst the performance of the
parametric models varies considerably from one data
set to another, these seem fairly consistent.

In most cases the best performing model is usually a
parametric one.

Since we can select the best model via analysis of
predictive accuracy, It is still best to be eclectic in
model choice and ‘let the data decide’.

Some of these models are very computationally
Intensive (but who cares?!).

‘Prediction is very difficult, especially of the future’
(Niels Bohr)



Software Reliability Course - Agenda

......

Motivation

Introduction to Software Engineering
Measuring Software Reliability

Software Reliability Techniques and Tools
Experiences in Software Reliability
Software Reliability Engineering Practice
Lessons Learnt

Background Literature

e S A e A o



5. Experiences In Software Reliability

......

« Limits in software reliability

 Reliability & Avallability Guidelines

» A Case Study from the Nuclear Industry

« How might we gain confidence in ultrahigh
reliability?

* The law of diminishing returns: ‘Heroic
debugging’ does not work

o Adams effect
 Exercises



Limits to reliability measurement (1)

......

* The dependence upon computers in safety-critical
applications is accelerating:

A330-340 flight control: 10~ failures per hour stated
requirement

Sizewell B reactor protection: 10 prob of failure on
demand

Air traffic control: 3 seconds per annum

Chemical plant: risks comparable to nuclear

Robotics (e.g. surgical assistance): surprisingly modest
requirements

Automobiles (engine management, ABS, 4WS)
Railway signalling and control (TGV): 10-12 prob of fail per
hour



Limits to reliability measurement (2)

=i

« Can we build these to the reliability levels

needed?

« How do we convince ourselves that the
reliability targets have been achieved when
software plays a critical role?

« What are the limits to the levels of reliability
we can measure? Are these just limits to the
current measurement techniques, or are they

INtrinsic?



How much confidence should we place in a
system that has not failed at all?

-t
------

*Let the random variable T represents the time
to next failure, and let us assume that this
program has been on test for a period t,,
during no failures have occurred.

T Is exponential with rate A

«And mean 6 =\

*Assume, In general, x failures of the program
during the period of testing t,.

(1)

http://openaccess.city.ac.uk/1251/1/CACMnov93.pdf




How much confidence should we place in a
system that has not failed at all?

......

*Bayes theorem states

p(A | data) occ p(2) p(data | A),
where the distribution p(L) represents the
prior belief on occurrence of the failures, A,
and p(A| data) represent the posterior belief
after seeing the data.

*Assuming the sequence of failures as a
Poisson process, then p(data | A) Is

proportional to AX . exp(-Aty).

(2)



How much confidence should we place in a
system that has not failed at all? B

......

*The form of p(1) (a conjugate family of distributions,
like Gamma) permits some homogeneity.

*The prior belief - Gamma (a, b), for some suitable
choice of a and Db.

‘n(A | X, ty) IS represented by Gamma (a+x, b+t,).
*Under conjugacy both posterior distribution and prior
will be a member of the same family: for example the
expected value, E(A), changes from a/b to (a+x)/(b+t,),
so that observing a small number of failures, x, in a
long time time t,, will cause the posterior expected value

to be smaller than the prior.



How much confidence should we place in a system that has not failed at all?
3)

We can now make probability statements about A, and about T itself:

pt|x.t0) = [p(t|A) p(A]x, tp) dA

(a+x)b+t,)d X
A (b+ty+d TxT]

[t follows that the reliability function 1s

R“ I-t'.- Iﬂ} = P[T} ! II'.- Iﬂ}

a T+ X
B b+ tp
B (h+m+r)

and m our case, when x =0,

&
B b+ tp
| _(h+m+r)

http://openaccess.city.ac.uk/1251/1/CACMnov93.pdf




How much confidence should we place in a
system that has not failed at all?

Ignoring prior distribution ?! (1)

......

' *Modelling “total ignorance” is difficult.

' +To represent initial ignorance, we should take a and b as small as
 possible.

The posterior distribution is approximately Gamma (X, t,), with the
approximation improving a, b — 0.

*We could informally think of Gamma (X, t,) as the posterior in which the
data “speak for themselves”.

- *When x=0 the posterior distribution for the rate is proportional to A1, and
- 1s thus improper (i.e., it yields a total probability mass greater than 1).

- *\Worse, the predictive distribution for T is also improper, and is thus
'useless for prediction.



How much confidence should we place in a system that has not failed at all?
Ignoring prior distribution ?! (2) \

Here 1s a possible way forward. Choose the improper priot

pd) =1

giving the posterior

pA [0, 1) = tpexp(-Aty)

which 1s a proper distribution. More importantly, the predictive distribution for T 1s also propet:

F

p10,6) = Ip(t] A) p(A]0p) dA

= 1,/ (t,+1)?

The reliability function 1s

R(£]0,10) = P(T>1]0,1)

= fﬂf(f‘l‘fﬂ)

and in particular, R(t, | 0, 1,) = 1}'2: 1.e. we have a 50:50 chance of seeing a further period of failure-free
working as has already been observed.



' How much confidence should we place in a system that has not failed at all?

What prior belief is needed to arrive at a
posterior belief in ultra-high reliability?
Is such belief reasonable? (1)

~ *The conclusion here Is that observing a long period of
failure-free working does not in itself allow us to conclude
' that a system is ultra-reliable. It must be admitted that the

|
~prior distribution here is rather unrealistic.

¥

;

eL_et us consider the case where the observer has genuine
prior beliefs about A.

| «Example: the reliability requirement is that the median
‘time to failure is 10° hours, and the trust has shown
failure-free working for 102 hours, what prior belief would
ithe observer have needed in order to conclude that the

“v’requirement had been met?



'~ How much confidence should we place in a system that has not failed at all?

What prior belief is needed to arrive at a
posterior belief in ultra-high reliability?

Is such belief reasonable? (2)

*From above, (a, b) must satisfy

1 ( b+10° Y
2 (b+10°+10°

# Which implies, since b>0, that a>0.1003288.

oIt Is Instructive to examine what is implied by prior beliefs in
this solution set.



| relevant degree of belief.

- How much confidence should we place in a system that has not failed at all?

What prior belief is needed to arrive at a
posterior belief in ultra-high reliability?

Is such belief reasonable? (3)

«Consider, for example, a=0.11, b=837.2.

oIs this a “reasonable” prior belief? Not, since the prior
probability that T>10° is 0.458.

*The observer must believe a priori that there is almost 50:50
chance by surviving for 10° hours.

 «If a =0.50, b=332333, the prior P(T>10°) is 0.499. As a increases

this problem becomes worse.

To believe that “this is a 10° system” after seeing only 10° hours of
failure-free working, we must initially believe it was a 10° system.

To end up with a very high confidence in a system, when we can see
only a modest amount of testing, we must bring to the problem the




Orders of magnitude less than ...

You can argue with the details of all this, but I think you
are struck with the ball-park order-of-magnitude
representing by this argument:

For the amounts of testing that are practically feasible,
the confidence to be gained solely from such information

IS orders of magnitude less than Is represented by, for
example, 10 failures/hr.

*Are there other sources of information, in addition
to testing, that could allow us to gain higher confidence?

(e.g. by allowing us to justifiably have strong prior
beliefs)



Reliability Guidelines

Typical ROCOF Time Between
| (Failures/Hr) Failures

| » 10-°h-t 114,000 years
f] 10-°h-1 114 years
| 10-3h-1 6 weeks
10-°h-t 100 hours
10-1h1 10 hours




Use Avallability Guidelines

......

Acceptable Down
Time

Availability

5 minutes/year

5 nines (0.99999)

5 minutes/month or
lhour/year

4 nines (0.9999)

10 minutes/week or 1
shift/year

3 nines (0.999)




' Software Reliability in Safety Critical Applications:

A Case Study from the Nuclear Industry (1)

 Software Is being widely used in various safety
critical industries such as automobile, medical,
petrochemical, nuclear, railways, etc.

» The Increase In software-based systems for
safety functions requires systematic evaluation
of software reliability. Software reliability
estimation is still an unresolved issue and
existing approaches have limitations and
assumptions that are not acceptable for safety
applications.

http://www.arsymposium.org/india/2012/abstracts/t2s2.htm




Software Reliability in Safety Critical Applications:
A Case Study from the Nuclear Industry (2)

 Existing reliability estimation techniques
require a sufficient and accurate history of
software failures, which is not available for
new software products. A novel idea uses
mutation testing and software verification. The
approach has been demonstrated through a case
study from the nuclear industry (specifically,
the core temperature monitoring system of a
nuclear reactor).

http://www.arsymposium.org/india/2012/abstracts/t2s2.htm




It need to ...

......

 Firstly it needs to be emphasised that we do
need to express our dependability requirements
In the language of probability.

| = The sources of uncertainty we have met earlier are
Eﬂ still present:
- Operational environment
- Incomplete knowledge of possible behaviour

= Informally we need to have sufficient confidence
that the system will fail sufficiently infrequently
(or, for a one-shot system, with sufficiently low
probability, etc).



How might we gain confidence In
ultrahiah reliabilitv?

......

« Direct observation of operational behaviour of the
system (e.g. In test or simulation) Is not going to give
assurance of ultra-high reliability:

* The problem of ‘representativeness’ of input cases
* The law of diminishing returns ...

4 * Aldsto be used to obtain confidence In software
f designs:

= Past experience with similar products, or products of the
same process

= Structural reliability modelling

» Proofs and formal methods

= Combination of different kinds of evidence

= Validation by stepwise improvement of a product



‘Heroic debugging’ does not work

J
|

| sample elapsed achieved tj/m;
| ! size, 1 time, tj mttf, m;

| 40 6380 288.8 22.1
' | 50 10089 375.0 26.9
o 60 12560 392.5 32.0
| : 70 16186 437.5 37.
| ] 80 20567 490.4 41.9
O 90 29361 617.3 47.7
ﬂ 100 42015 776.3 54.1
g 110 49416 841.6 58.7
" l‘ 120 56485 896.4 63.0
20 130 74364 1054.1 70.1

B Table 1 An illustration of the law of diminishing returns in
‘ 1 heroic debugging. Here the total execution time (seconds) required
to reach a particular mean time to failure is compared with the
,' | mean itself,

Later improvements in the MTTF require proportionally
.~ longer testing.



- Adams effect

; 0.03
|
4
i
} 0.02
|
|

| | 0.01

=i
S
-,
e
—
ey
'-ﬁ h‘
L
n
] ] ]
8000 12000 16000

Elapsed time (hours)

| l Figure 2 Estimates of the rate of occurrence of failures for a

system experiencing failures due to software faults and hardware

\ design faults. The broken line here is fitted by eye. Once again, the

' rate 1s not recomputed at each data point here: the plotted points
, represent only occasional recomputation of the rate during the

'. observation of several hundred failures.

Field data on many copies
of a system undergoing
failures as a result of both
software and hardware
design faults; points are
‘current rate’ estimates
from LV, curve fitted by
eye.

Again a strong law of
diminishing returns

To get very low rate will
take extremely long time
even if achievable (what is
asymptote?)

Adams effect: rates of faults
differ by order of
magnitude; system
eventually is depleted of the
‘large’ ones; unreliability
then comes from many
small faults; fixes have little
effect upon unreliability.



Exercises( Course Work)

Questions 1

1. Imagine that your job is to evaluate the reliability of the
oftware in a company. This means setting up an in-house testing
service, whereby test cases would be generated in such a way as to
provide input to the reliability growth models described in the
lectures. How would you propose to go about your task when the

software in question is

a) a word-processing system

b) a air-fraffic control system

C) a car engine management system

d) a controller for a domestic washing machine

In each case discuss if you could justify the test procedure you and
advocating as the only festing to be carried out on the particular
product, bearing in mind that there is a fixed budget from which

all testing must funded. "



Reliability Course Solutions 1

There are three questions to consider for each example:

1. What is a failure , and what classification of different failure
severity levels is appropriate?

How should execution time be defined and measured?

How can the true operational profile be approximated for the
purpose of random testing?

-l N

These suggest something like the following proposals for the
four examples.( Although credit may be given other well reasoned
suggestions.)



J
|

@

A
| "

a) A word-processing Sﬁtem

a) Some market research would help to establish frequency of
use of various functions. For example, the proportion of users
who would require mathematical notation. This research could
be used as the basis for a representative selection of
documents for input and editing by several testers possessing
varying level of typing skill. Alternative execution time
measures: hands on time ; number of words typed; processor
time consumed by word processing software. The latter two
measures presume the availability of some automated data
collection function. The following and categories of failure ,
roughly in’ decreasing order of seriousness; loss of data;
corruption ( misprinting of document ); user-interface
difficulties. No safety critical failure . It is likely that

reliability requirements could be assured by such random
testing alone.



Q:

b) A air-traffic control system
=

A: b) Far higher potential‘&ist of failures for this safety critical

system , allows aircraft to collide; fails to maintain track of
aircraft; makes unnecessary demand on memory or attention of
human operators. Execution time measure: processor time.
Operational profile: examine pattern of traffic on existing
ATC systems, model and simulate with real operators
participating at screens in lifelike simulation. ( This will be
extremely costly to do well. ) Random testing insufficient
alone to assure ultra-high reliability . Deliberately concentrate
some testing effort on critical scenarios. Possibly some static
analysis and formal verification of code.(There is some
controversy as to whether even all this is adequate, particularly

if system contains much design novelty over preceding
systems.)



Q: ¢) A car engine management system

A: ¢) Safety critical failures: engine cut-out at speed,;
sudden, unrequested acceleration. Other failures in
order of decreasing cost: overheats and damages
engine; degraded performance of fuel — efficiency.
Execution time: total engine running time.
Operational profile: examine driving patterns; Test
with selected drivers on simulation ring or road.
Require stress test in addition to random testing.



l
|

|

|
s
|
!

f

r
|

:

Q.

A:

d) A controller for a domestic washing machine

d) Possible safety critical software failure : door allowed to
open while drum rotating ( and with hot wash? )- unless this
is prevented by mechanical interlock, as is likely to be the
case. Costly failures : floods floor; damages delicate fabrics;
inadequate wash. Execution time: accumulated wash time.
Operational profile: Market research then parallel testing of
many machines using different loads and programs. Perhaps
exhaustive testing of software possible, depending on
complexity ? Random testing alone sufficient.



Q- d) A controller for a domestic washing machine

A: d) Possible safety critical software failure : door allowed to
open while drum rotating ( and with hot wash? )- unless this
is prevented by mechanical interlock, as is likely to be the
case. Costly failures : floods floor; damages delicate fabrics;
inadequate wash. Execution time: accumulated wash time.
Operational profile: Market research then parallel testing of
many machines using different loads and programs. Perhaps

exhaustive testing of software possible, depending on
complexity ? Random testing alone sufficient.



APPENDIX A

Table 1. Data set 1 (162 inter-failure times)
(read from left to right)

60. 0. 607. 40. 28. 33, 4. 16.  9a. 15,
5. 9. 77. 8. 15 160. 1. 104 16 9.
22, 14 82 6. 79, 43, 12. 87. 138, 108.
30. 295, 113, 36.. S50. 8l 89, 157. 14. 166,
36. 5. 69. 50. 164. 392. 16, 154. 176. 247,
304. 5.. 2. 135 -233. 156 295, 152. 341. 103
16. 83, 7. 221 4 38 1l. 17. 107.  $9,
127. 20 1. 21, 112, 23, 193, 1104. 103. 318,
114. 1553. 306. 245. 107. 2. 327. 696. 5. 63
1054, 495. 128, 482, 116, 35. 310. 110. 98,  60.
177.  65.  231.  62. 158, 1622. 386  70. 151. 809.
1710. 745, 330 5311 35&9. 1967. 772, 3337. 620. 3044.

. 38. . 4

. . . I, 3812. 726. 1452, 5173.. 1957. 3097.
25. 1048, 78, 33, 6725. 1366. 2859, 556. S5028. 537.
63. 113, 1236. 1406, 1580. 3546. B575. 1893. 198. 3326.

Fig. 1: Plot of cumulative number of failures against
total elapsed time for data set 1.

170

110000



Fig. 2: Median predictirzrﬁs of Tgs,....7 152, from the raw

S00d

]

models for

data set 1

|

0 T 80 90 100 E10

120 130 140 180 160 170

Fig. 3: u-plots from the raw models for data set 1

JM (gignificant at 1% level)

1-.1]

0.0

1.0

MO (insignificant at 20% level)
e [ {gipmificant at 1% lavel)
cescimseen FL (mignificant at 1% level)

aaaaaaaaaaaa



Fig. 4: log(PLR)-plots for the raw models versus the DU
model for data set 1 -

-10 M - . - A

60 70 80 90 100 110 120 130 140 150 160 170




Table 1. Data set 1 (129 inter-failure times)

(read left 10 right)

[ 760, 758.  303. (SRR, - TR [ SRy a ol 1%
221 14. 15, 4. 1. 153 409, - 56 245 ¥4

180.  397. 19. 145, 36, 54, 1337. 163. 8. 1:

17, 16. 87, 19,  29. 0.5 300. 360. 10. 11,
100, 252, 460, 179. 3, 24, 253. 163. 54, 132,
328. 3. 9. 12. 18. 9. 75 15 366. 428,
212. 115, 264. 269. 276. 1. 999, 30. 495 472,
344, 550. 131 47. 92, 863. 991, 35, 9549, 249.
607. B3, 614, 352, 673. 4179. 111. 75. 407. 288.
894, 1314, 845, 55. 409. 36 15 1960. 60, 19,

20 79. 24, 1737, 7984, 10. 20. 338. 250. 1682.
212, 287,  56. 4973, 3500. 59. 98, 2439. 1812. 6203
385. 3500. 4892. 687,  62. 2796. 3268. 3845.  76.

AR OEaRenYS

Fig, 1: Plot of cumulative failures against total time for
the data in table 1.

130

i} ' .
o F s
10 b "

wf L

0

20 .

lf

0 20020 46000 40000 20002

l& “




Fig. 2: Median predictions of Tgs,...,T729, from the raw
vonn mt?dels for data set 1
......... S H
—— O
——— LENPF
[S— |
200G
1000 -
____'.,.—-"
tll-l ?.'H l:l i; t;l t;l l;ﬁ [

Fig. 3: u-plots from the raw models for data ;et 1

ke Srlonae wigher

wreeee JUM 36033601 1%
ow TAETIP0e-01 21X
WAFF . 38M4T0le=01 X
el 8 LTMESe=01 >R

43 degrer line

w0 6 03 @3 04 0% o8 0T 0B 09 8




Fig. 4: log(PLR)-plots for the raw models versus the DU
rnqdel for dataset 1

“ A
g LT ,'.-"'-.,m\'f
E — DU i |
el LNHPP i
s KL N\f\/_/,
ol
¢
P 0 n
, \\; \_\

10

WA
s A

. 3 13 L] 2 L
80 70 a0 90 100 10 120 130

TR A

™
& |

=10

0 Fig. 5: Median predictions of T6,....T129, from the

_ ;g recalibrated models for data set 1

* :

70 =

; ——— {
A

60 70 a0 90 100 1o 120 130



Fig. 6: u-plots from the recalibrated models for data set
1

1.8 = T T T T T T T T b ditienge .
e ool B [— Jus LAT1100e=01 10-20%
= —_— pUE 3.291004e-02 <20%
Ll o L g LKHEPS  1.127376e-01 <203
i I BEIMBI4E-02 <20
Ll ;1_.- — 4 drpree line
o i
0s
-
as b _;“
) 7
04 B .-"E
S
0.2 ¢
i
=B

al’_l ] 1 1 ] 1 1
00 0 OE 03 o4 DS 0B 0T OB 0% 1A

L () (0 L 03 03 1 £ 3, 3, L O3
_ TaTaw T e AENITERwIANTRENITESE - -

Fig. 7: log(PLR)-plots for the recalibrated models versus
the DUS model for data set 1

’ o m el T

— g
———— LNHFPPE

[ JLE

logiPLR,)

H ] - - HIH‘M-;.J"M"MH'M

g b1

L ] ] ]
L1 mw -] 1] 100 112 129 130



Fig. 8: log(PLR)-plots for the recalibrated models versus
the raw models for data set 1

log(PLRY)

60 70 8o 90 100 110 120 130

wvsesesre K1S versus XL




Table 1. Data set - SYS1 (136 inter-failure times)
(read left to right)

3, 30. 113. 81. 115.
9. -3 91. 112. 15.
138. 50. 77. 24, 108.
) 88. 670. 120. 26. 114.
L 325.- 55. 242, 68. 422,
# 180. 10. 1146. 600. 15.
» 36. 4. 0. 8. 227.
o 65. 176. 58. 457. 300.
¥ 97. 263. 452. 255. 197.
| 193. 6. 79. 816. 1351.
148. 21. 233. 134, 357.
193. 236. 31. 369. 748.
0. 232. 330. 365. 1222.
543, 10. 16. 529. 379.
44, 129. 810. 290. 300.
529. 281. 160. 828. 1011.
445, . 296. 1755. 1064. 1783.
860. 983. 707. 33, 868.
724. 2323. 2930. 1461. 843.
12. 261. 1800. 865. 1435.
30. 143 108. 0. 3110.
1247. 943. 700. 875. 245.
729. 1897. . 447 386. 446.
122. 990. 948. 1082. 22.
75. 482. 5509. 100. 10.
1071. 371. 790. 6150. 3321.
1042. 648. 5485. 1160. 1864.

4116.




Question 2

Using the data of Table 1 and one of the more accurate (see

Fig.2e and Fig.3e) sets of predictions from the median plots of Fig
1e , obtain an approximate plot of achieved median against total
elapsed test time. Comment on the shape of this. You have been
asked to continue testing until you are confident that the median
time to failure is 1000 hours (remember the raw data is in
seconds); comment on the feasibility of this.

Notes on figures

i)

iii)

V)

"raw model" is used to make the distinction between the "raw"
reliability models initially applied and the recalibrated version

of these models, later applied.

The abbreviated model name (eg. DU) followed by and S (eg.
DUS ) is used to.refer to the recalibrated version of the model

in question.

In figures 3e, 6e and 9e, the DU model ( the DUS model in
the case of Fig 9e coincides with the zero axis (since the
log(PLR) of a model versus itself will always be zero).

In Fig 1e to 10e it can be seen that some models tend to give
similar predictions (eg. the LV and KL models will frequently
give similar predictions). This is because the underlying
assumptions for these models are similar. In the case of data
set SYS1 the LNHPP model actually coincides with the MO
model for the range of predictions shown and the L model also
coincides with the MO and LNHPP models over most of the

range shown.



Question 3 and Reliability Coursework Solution 3

Q: a) Table 2e (Data set TSW ) shows inter-failure time data
("hand-on" time measured in minutes) from software failures
observed by a single user of a work station. From this data
construct a plot of the cumulative number of failures against
the elapsed time. Comment on the shape of this plot.

a) This plot has the increasing, concave shape typical of the
progressive removal of design faults. The failure rate ( slope
of plot ) is decreasing. Also the decreasing rate at which the
slope is decreasing indicates a "diminishing return".



5 BREREEY

oo

o

S s

i
& |

EREREEH

:..‘%“—‘i:“—éi"’# o

Fig. le:Median predictions of T3s,...,T136, from the raw
models for data set SYS1

3000 ] - 1 ) 1 ' v d ] k ¥ 1 i i ¥ i ]
2900 '
2000
2700
2600
2300
2400
2300
2200
2100
2000
1800
1800
1700
1600
1500
1400
1300
1200
1100
1000
a00
a00

G600
a00
400
300
200
100

ML D I B D Tl B B L N B L B L ML B (L L B N B B B ey oy i i

3

Mo
(LM)
(LINHPP)

DLL

)

P P I I T . P P T P P P P P I P P T

30 40 &0 60 70 a0 a0 100 110 120 130

— IM
R - i
e MO
e DU

—— LNMNHFP

Lv

[
i
=



Fig. 2e:u-plots from the raw models for data set SYS1

LR A E N R A s R N A DL R e

1.0
0.9 F

0.8

0.6
0.5
0.4
0.3

0.2

0.1

0.0 " " 2 a 1 " ! 2 "
00 01 02 03 04 05 06 07 08 09 1.0

ks disfonce siglev

IM . 1.811700e-01 <i7%
------------ GO 1.466002e-01 2-5%
et (0 7.886967e~02 <20%

DU 1.624068e~-01 <17%
m—— LM 1.027675e-01 <207
=~ LNHPP 7.886767e~-02 <20%
— Ly 1.479544e-01 2-57%

-------- - KL 1.420824e-01 2-57%



Fig. 3e/log(PLR)-plots for the raw models versus the DU
model for data set SYS1

& o

L : g 3 f_
2 't
3 J
Ll
20

gy -3 |
(0

0 T
- -5 I
i N
:[J I
0 ~¥
0 .
fa‘ =10

30 40 o0 80" Y0 80 a0 100 110 120 130 140

A




Reliability C‘?_l:;rsewurk Solution 2
From the u-plot, the LNHPP and MO models perform best as
predictors of time-to-next-failure (i.e plots closest to 45-line), as far
as bias is concerned, with the LM performing almost equally
well.The PLR plot” yields a similar conclusion for overall
performance of these predictors ( because the PLR plot vs. DU is
closest to exhibiting a consistently increasing trend for these
models).Therefore the median time-to-next-failure plot for LNHPP
¢ MO is selected as the best available estimate of achieved
median.(these two median plots are so close as to be
indistinguishable.) The horizontal axis is now transformed in order
to plot achieved median i against t;, the cumulative elapsed time,
rather than against i, the j=1 cumulative number of failures used in
the provided. The resulting plot can be fitted by eye as an
increasing, approximately linear but perhaps slightly concave (i.e.
decreasing slope ) function of elapsed time. The bottom left hand
point of the fit is at just over 5,000 seconds elapsed time ( the time
at which about 36 failures have been observed and prediction is
started ) and about 200 seconds achieved median inter-failure
time. At the other ( later ) end of the fit, the total elapsed time is
approaching 90,000 seconds and the best achieved line fit is
approximately .015. A rough conservative calculation shows that,
at the same average rate of improvement in median,it will take
approximately a further 240,000,000=(3,600,000-1,400)/.015
seconds,i.e. about 7.6 years of continuous testing in order to
achieve the required median of 3,600,000 seconds. If the plot is
actually concave,the time will be even longer. This amount of
testing is almost certainly infeasible in practice.



Q:

b) Figure 4e shows the median predictions which result when

8 raw reliability models are applied to this inter-failure time

data. Briefly discuss what this plot tells us about these

predictions. Discuss what the u-plot in Fig Se tell us about the

error in predictive accuracy in each of the models (i.e the bias

in the predictions). By examining Fig 4e and Se suggest which

model (or models) may be giving the most accurate median

predictions.

b) The plots in Fig 4e confirm the improvement in reliability

by the clear increasing trend in median time-to- next-failure

prediction. Howéver, the predictions from the different models

are noticeable inconsistent. (Although, certain pair of models

gives very similar predictions.) Clearly they cannot all be
accurate, the predictions from the different models containing
different amount of " noise ". ( Some models produce
predictions which are less stable that others as each new data
point is incorporated). The u-plot provides an indication of
predictor bias. All of these models appear to be producing
biased predictions since the u-plots deviate significantly from
the 45-line in all eight cases. From those u-plot which deviate
consistently below the 45-line, we can conclude that the
corresponding model is over pessimistic, tending to
underestimate the time- to-next-failure ( KL,LV). Conversely
a plot above the line indicates excessive optimism ( JM,
GO,LM,LNHPP). The bias, or otherwise , specifically of the
median predictions is indicated by the vertical distance of the
u- plot from the 45-line at 0.5 on the horizontal axis, since the
vertical value of the u-plot here is the propertion of u- which
were less than 1/2, i.e. the proportion of t; which were less that
the median of the predictive distribution function, F(t). On this
criterion the MO and DU predictors are best. The fact that, in
Figure 4e, these two models produce medians lying between
those of the other models appears to confirm the suggestion
that these two models produce the most accurate medians.



Fig. 4e:Median predictions of Teg,...,T129, from the raw
models for data set TSW

(M
LNHPP

P TP P

S

La ol o 1 e Bl il gl

£ NE}

gl 1

[P HEI.r

1LV
KL

[y
ol
=
=
L L L T B T T B L L R ELA L L L I R L S T DL I T B T R R I B

|

120 130




SO TR G AR OO

-

FEB O

o

p0 01 02 03 04 05 06 07 08 0989 1.0

ks dislonce sigley

—— TE 8.33803%=-01 21%
............ ao 3.228883e-01 <I%
snane MO 1.877333e-01 1-2%
S | 2.522298e~01 <1%
e LM 3.18891%e-01 <1%
—_— IXHPP 2.944701e=01 <1%
S 278591801 <1%

P }1. 2-?9"‘!'ﬂﬂﬁﬂ"_ﬂ'1 “:15



Q: c) Fig 6e shows the log(PLR) plot for each of the raw models

when compared against the DU model. The large jumps in
these plots coincides with the 79" inter-failure (ie. t,;=9549).
By examining Table 2e what do you notice is special about

this inter-failure time? Comment briefly about the predictions
of T.,.

¢) t, is extremely large compared to the other inter-failure
times. It might be worth checking the recording this time in
case there has been a clerical error. The large jump in PLR at
i=79 indicates that the KL and LV predictors allocate much
more probability to their upper tails than does DU (ie. they
assign higher probability to large T; than DU does).



Fig. 6elog(PLR)-plots for the raw models versus the DU

model for data set TSW
s 0 As Xa Ao 03 X 03 L3 R, £ 55000 oses

g

A L1 CaEd
-
&
2
45
a5 - -
2_5 -
s
5 -
__5 El [ . i il
GO 70 BO a0 100 110 120 130
i
M
- GO
| 11
el 111
——=mmime LR
ILXHFP
Ly




Q: d) Figures 7e,8e and 9e, shows the corresponding plots for

the recalibrated version of the models. Discuss each of these
figures when compared with their raw equivalents (ie. compare
7e with 4e, 8e with 5e and 9e with 6e.

d) Comparing Figures 4e and 7e shows that the recalibrated
versions of the predictors are more consistent with each other
than are the raw predictors. This may well be due to a general
convergence on the truth resulting from recalibration, ( at least

for the medians). Comparing Figures Se and 8e suggests that
recalibration has tended to reduce bias. Comparing Figures 6e

and 9e we notice a striking similarity in performance between
DUS and MOS. The PLR is almost horizontal ( apart from the
jump at the outlier, t,.) Also DU appears to have been
improved more -by recalibration than several of the other

models. (The trends in Figure 9e are "less upwards" than the
corresponding trends in Figure 6e ).



Fig. Te:Median predictions of Teg,...,T 129, from the
recalibrated models for data set TSW

mnu [ s ] g 1 1 ] 1 Y 1
2800 .

F 2700
2600
2500
2400
2300
2200
2100
2000
1900
1800
1700
1600
1500
1400
1300
1200
1100
1000

a0

R

Fom

P
P [ A I T P T P P T

MoS

oSG

00
500
400
J00
200
100

LML R B B B I B UL L S B L B L T B B L L B B N b s e o

wHrEes

B0 70 a0 - a0 lo0 11 120 130

— NS

mesmeeeerenn QOIS

----- -~ MOS

........... - DUs .
——————— LMS .

LNEPPS

———— LVS

D L LD K1s

?-i:""éi"# raxa

«w



Fig. 8e:u-plots from the recalibrated models for data set
TSW

aaabo

] = 1 . L] i L] M i . ] g T s 1

GRS e

(IB

00 01 02 03 04 05 08 07 0B 09 1.0

ks distonce siglev

—_—JME 1.411199:-01 10-20%

remeneserans GO 1.340998e-01 10-20%

e MOS B.A471752e-02 <208

el | 4. 9.29]054e-02 <20%

e . 1.200516e-01 <20%

— INHPPS 1.12%5376e=-01 <20% %
— LV 1.23982%e-01 <20%

T ¢ B B.638844e-02 <20%



e Fig. 9e:log(PLR)-plots for the recalibrated models versus
the DUS model for data set TSW

o
gﬂ :
0 i LVS
T ®35 | KLS
&0
2]
gb‘
: °f '
.
: o
5 k-
-5 1 1 = [] 3 :

60 70 80 g0 100 110 120 130

JMS
............ cos
e—sasneces MOS
aiissmisnsce ‘DU
~ee— IMS
LNHPPS
LVS




Q: e) Figure 10e shows the log(PLR) plot for the recalibrated
predictions versus the raw predictions (ie. recalibrated JM

o versus raw JM, etc.). Comment on this plot.

: ¢e) Recalibration seems to improve all the predictors, and

especially the DU.




Fig. 1Qe:log(PLR)-plots for the recalibrated models
versus the raw models for data set TSW

— K] T v 1 ¥ .D'U-
E ;"'-/'/
@ s
St § -
/ M
LA :
TSN AN l%‘
i Fif N g [LNHPP
15 | f* i .
fFs MO
L i aaind
: LY
A FA\.\,\ L
AN Y S~ "
A A
s | A N Y A A
N podll LT
L ‘}\ N AN Prud
7 T
_5 L] L] 1 § ¥
80 70 80 50 100 110 120 130
Y
- GO
--------- MO
------ DU
S —
LXHPP

+++++



Q: f) Based on all the plots state which prediction system (or
systems) you use for the next reliability prediction (ie. the
130" inter-failure time,Tys,) for this data set? Discuss briefly
what led you to make this choice.

A: ) MOS or DUS best on PLR and have good u-plots. These
would be favored over LVS and KLS because , from Figure
9e, there is evidence that MOS and DUS have performed
better recently (i.e.for the last 25 predictions).



SS3 interfailure data set
[ 107400] 17220 180] 32880 960
26100]  44160] 333720] 17820 _ 40360
18780 960 560 75060 24 '
120 1800 480 T80| 37260 . : . .
2100] __ 72080| 258704 480 21900 Inter—failure t:me_: vs failure no : ss3
478620] 80760 1200|  ©0700] GEa860
2220] 758580| 166620 8280] 951354 300000 - — st T T . - — —
1320] 14700 2420 2520]  162480| 2ep000 F K
szoszol 05720  418200] 424760) 543780| SRO000 -
8820] 488280 480 540 2220) 3 2TO00 [~ . e
[ 1080] 137340|  91860| 22800  22920| oE0D00 |- . . . E
473340) 354001| 360480| 380220] 848540 250000 [ -
120] 3416 74160 252500] 878300 240000 L -
360| 8160 180 _ 237920 120 . 7 o * r
m 70800 __12560] ___300] __ 120] 556540 230000 - s . w a 3
186040] 56250 420] 414484 240780] 220000 |~ 3
206540 4740 __10140 300 4140 210000 |- - 3
[ 472080 300|  &7600|  46240| 41940 200000 - - K
576612]  71820] 83100, 900| 240300, 190000 | . . R
73740] 169800 1| 302280 3380 igpooo . ]
2340]  82260]  558520] 780 10740, 170000 . :
180| 430860| 165740] 600|376 180000 | " " - . ]
5100 549540 540 900| 5212 150000 [ " [
420| 518840 1020 4140 480] 140000 [ "o -
180 600]  53760] 52440 180) 130000 [ . -
273000] 59880 840 7140] 76320 - -
140680] 237840 4%60] _ 1920]  16860] 120000 |- . - 3
77040|  74760] 738180) 147000]  76680] 110000 | . v
70800| 66180 27540  55020] 120| 100000 |- - N ]
296796| 90160 724580] 167100] _106200| #0000 |- . . % . - R
480 117360 6480 60]  $7850| 0000 - e o * . - " ]
350560] 391380 180 180 zn;:ol 70000 |- e . wm " L. . - 3
540|  336900] 264480 847080] 26480 B0000 [ . " " . Yoo
349320 4080 64880 840 540} 50000 [ - . . f. - r
589980| 332280 94140 240060] 2700 40000 L™ s . e
900 1080[ 11580 2160 192720 aoooo = 1
87840 84380 378120|  58500| 83880 " zoo00 £ . - = . . o o]
158640] - 650 3180 1560 31%0] - . . - . = |
5700] 226580 6840] _ 69060] _ 65530{ 210030 T L . Y T
65460] 402900 75480| 380220 704968 o e e e Vel w et W P NN S
S05680] 54420 319020] 95220 51 L 20 40 &0 B8O 100 120 140 180 1BO 200 220 240 280 2AO
5240] 49440 420 ea75200 1
7200] 68540  26320]  448520)
430] 1042620| 779580 80401 11% .t - .
SO7140| 53500 383940] 2059460{ 5 .
» 66000] 43500 2040] £00] 2
| 327800| 201300| 226980] 553440 10204
960| 542760 819240] 801660, _1&3-;_;]
Ny 71640| 353950 9090] 227970] 171
1 597900 689400 11520]  233%0] 75870
A 122030| 26010 75240]  68130] 311050|
- [ 498360| 623280 3330 7250]  47160]
o 1328400] 109900  343890] 1615860]  14840|
1 GS07T60| 26220 376110] 181890  64320|
468120| 1568580] 333720 180] 810]
322110] 21960 363600 |



Laplace statistic vs failure no :.ss3

............

L L1 CE]
[ I | L | | I A | I k 1 ] ¥ k
2_ - S S ——— i e 4 e e .
1 _ -
0
-1
—E e
-5 L
=4
-5 L
.__,_E ] i L i 1 L 1 i 1 i L " ] " 1 ¥ J M ] M 1 4 1 I
0 20 40 - 60 80 100 120 140 160 180 200 220 240 260 280
i
— _



Cumulative failures vs total elapsed time : ss3

| 280 . ‘ ' : , ; . . —

. 260 | -
240 | ' -

220

I
1

» 180

160

| GG TR AT S
1

140

120

100

80

| S PR R S B ey
—

60

e

0 10000000 20000000 30000000 40000000 50000000 60000000
tt

tt,



300000

290000 |
280000 [
270000 |
260000 |-
250000

=20000
230000
220000
- 210000
200000
120000
180000
170000
160000
150000
140000

130000 |

120000

110000 |
100000 |
90000

BOODOOD
70000
60000

50000 |

40000
. 20000

20000 |

10000
0

Mediang versus i for data set ss3
Raw Parametric

(L L L L L L L L L L L e e e e e R

¥
>}
|

LN LN L LA LA LA LA |

!

by
el
ey

=

# el

]

/

P N R T P P M BT N T T I NI S S I R D R B

50 70 80 00 100110120130140150160170180190200210220230240250260270280
LG

—— M

srsmmmmmcenn 30
—— M0
— = DU
——— LM
LNHFPP
— LV

......... = KT,




u—plot for data set ss3
Raw Parametric

n_‘,n 2 L] " I L ] L 1 L 1 L 1 L L 1
00 01 02 03 04 05 06 0¥ 08 09
' =i
ks distance giglav
— JM 2.940505e-01 >1%
------------ GO 2.926419e-01 >1%
— WO 2.895953e-01 >1X%
— DU 2.87013Ve-01 >1X%
s e LM 2.940440e-01 >17
- LNHPP 2.928020e-01 >1%
mmsiee LY 2.299730e—01 >1%
- KL 2.153911e-01 >IX

1.0



y—plot for data set ss3

Eaw Parametric

1-“ T T T T T 1 T T ) T T T 13 T T T T T
0.9
.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
u_-_u M 1 2 I L 1 I ] 5 1 I ] i 1 " L n
00 0.1 02 03 04 05 08 07 08 093 1.0
L1 G
ks distance siglev

—_— M 1.571204e-01 >1%
--------- G0 *1.548108e-01 >1%

MO 1.79904%e=01 >13%

DU 2.058513e-01 >1X%
Sm——— 1M 1.581629e-01 >1X%
=—— LNHFP 1.880730e-01 >1%

LY 4.411142e-02 <207

R 4 P 6.308147e-02 <20%




Log(PLR) versus i for data set ss3
80 Raw Parametric cothers versus DU
: N L L L L T T T ¥ T

log(PLR,)

| T B

|-|-t_l||1-

I S S N T S T N S N NI T .

-10
60 70 80 90 100110120130140150160170180190200210220230240250260270280

J | L1 G
—_— M
[ — G'U‘
—_—_ M0
| { — DT
—_— LM
———— LNHPP
‘l LV
el 4 A




| ’ Medians versus i1 for data set ss3

Recalibrated Parametric

| ’ B00000 T[Tt

| | 200000
280000

‘ 270000

"y
LI L B

260000

230000

\
‘ 240000
| 230000
i 220000
|
\

LR

LI
-

210000
200000
190000
o5 180000
, 170000 | E
160000 | E | ;
150000 | .y 2
' 140000 | 48
[ ‘ 130000 | £
\ 120000 -
110000 |
100000 [
90000
80000
70000
60000
' 50000
40000
| 30000
\ 20000
10000

‘ .u.lr|1|--'-||-'|-I|-Fr1-lajl!|1l1r'|'||ll1|-||‘!|F-

] : 60 70 80 90 100110120130140150160170180160200210220230240250260270280
L C1 G

P T I P

L

T T

P BT e T

JHS

Gos -
MOS

Tus

M
INHPPH

‘| Lvs

| S,

111




u-plot for data set ss3
Recalibrated Parametriec

03
0.2

ﬂ.l i

0.0
ﬂ‘ﬂ

7 T T Tt

/

01 02 03 04 05 06 07 08 09
LC1 G
ks disfance siglev
JME 8.397251e-02 5-10%
Gos 7.326858e-02 10-20%
MOS 6.270546e—02 <20%
DUs 5.632747e-02 <207
Lad 8.477152e-02 5-10%
LNHFPE  6.828948e—02 <20%
Lvs 8.8604181e—~02 5-10%

KLS 6.401303=—02 <207

1.0



y—plot for data set ss3

Recalibrated Parametrie

| —

L] ¥ I - ] ¥ i ¥ v i

]

' A ! 1 I A I i ' Il I

sesemeses: (EIC)E]
MOS
DUs
— ' LMS
- LNHFPS
Lvs

00 01 02 03 04 05 06 07 08 09
LC1 G

ks distance siglev

8.161902e-02 10-20%
- 8.279800e-02 10-20%
1.047152e-01 1-27%
1.457976e—-01 >1%
8.313545e-02 10-20%
9.67365%e~02 2-5%
5.745424e-02 <20%
8.173585e-02 10-20%

1.0



| | Log(PLR) versus i for data set ss3

Parametric — recalibrated vs raw
14{] "I'I'I"l'l'l-‘-l'l'l'l""l-_'ll'i"i'lll'|';|p

~10 ST TE N RTINS R R T R R NI SR T T B

€0 70 80 90 100110120130140150160170180190200210220230240250 260 270280
t:-:.:l- . ¥




Log(PLR) versus i for data set ss3
Recalibrated Parametric  others versus DUS

L L l'I'I'I"I'I"I"LE.1I"J'I'I'I| O T

e
t oa"h LT
— =

' log(PLR)

L I T SR T T

R I T (T T R A A

’ _12 [ a1 .
J 60 70 80 90 100110120130140150160170180190200210220230240250260270280

|G G .

— JMS

............ cos

Pmm— MOS

-——— DUs
—— IMS
== LNHPP3H
— LVS8
R s b=



©@ N o Ok DR

------

Motivation

Introduction to Software Engineering
Measuring Software Reliability

Software Reliability Techniques and Tools
Experiences in Software Reliability
Software Reliability Engineering Practice
essons Learned

Background Literature



0. Software Reliability Engineering Practice

......

 Software Reliability Tools
« SMERFS Main Features

« SREPT Main Features

« CASRE Main Features

* Frestimate Main Features
« CASRE In large
 Frestimate in large

« Examples

-« Conclusions



- Software Reliability Tools

=

......

Statistical Modelling and Estimation of Reliability
Functions for Software (SMERFS) [William Farr of
Naval Surface Warfare Center]

SREPT (Software Reliability Estimation and
Prediction Tool) [Center for Advanced Computing
and Communication Department of Electrical and
Computer Engineering Duke University]

Computer-Aided Software Reliability Estimation Tool
(CASRE) [Allen Nikora, JPL & Michael Lyu,
Chinese University of Hong Kong]

Frestimate [SoftRel, Ann Marie Neufelder,
http://www.softrel.com/prod01.htm

etc.


http://www.softrel.com/prod01.htm

SMERFS Malin Features

=

......

« Multiple Models (12)
« Model Application Scheme: Single Execution
« Data Format: Failure-Counts and Time-Between

Failures

* On-line Model Description Manual

« Two parameter Estimation Methods

 |east Square Method

« Maximum Likelihood Method

» Goodness-of-fit Criteria: Chi-Square Test, KS Test
« Model Applicability - Prequential Likelihood, Bias,

Bias Trend, Model Noise

« Simple Plots



fare heua SUMaoN and Fredaclio - —= —_—

R N N ——

o o g o )

o g 8

8

3L

(o =0 Bt |

!
2
-
-
.




CASRE Main Features

=

......

« Multiple Models (12)
« Model Application Scheme: Multiple Iterations
» (Goodness-of-Fit Criteria - Chi-Square Test, KS Test

« Multiple Evaluation Criteria - Prequential Likelihood,
Bias, Bias Trend, Model Noise

e Conversions between Failure-Counts Data and Time-
Between-Failures Data

* Menu-Driven, High-Resolution Graphical User
Interface

« Capability to Make Linear Combination Models



CASRE High-Level Architecture

TEWNaT.
To screen,

printer, or
disk

T

Ed

it

Summary
Statistics

F ailure data

T

Model
Results

Model

Models — > Evaluation

W

)

Combination

Model

[interfailure

times, Fail-

ure counts Ezecution

-_.-"-. control

. r

e

ﬁl Smoothing —
—

—>| Transformations > >

Plotting

Model

Evaluation

F A

Component models,
weighting schemes

l

To screen,
printer, or
disk




- CASRE Screen Shot

EEASHE M=l E Time between failures: D:ACASREYIADATAMz1 dat =] 1
[H=W Edit Filters Trend Model Setup Plot Plot  Resultz  Dizgplay  Settings Copy  Help

e | [os
H FY
By £ Severity jl

Save as.. 11 11

Setup printer... po
J . Eitit 1}
v 2
fc_test.dat 01
fo_test.dat nz
kandlerl.dat no
1. dat nn
kandltbe. dat 1
kandler].dat p2
kandler.dat 1

832fc. dat ﬂ-1?

F3 1}
14 2.400000¢+001
15  1.080000e+002
16 8.800000e+001
17 6.700000e+002
18 1.200000e+002
19 2.600000e+001
20 1.140000e+002
21 3.250000e+002
22  5.500000e+001
23 2.420000e+002
24  6.800000e+001
25 4.220000e+002
. 26  1.800000e+002
\ 27 1.000000e+001

28 1.146000e+003
\ 29  £.000000e+002

1
r
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

GOO0.0 -

SO00.0mlt - = == === === == === = =

20 =4 I I e o e =

4000 .0 -y -

m
1=,

Time hetween failures - Seconds

U1

1000.0 wy -

i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
+
1 1
1 1
1 1
1 1
1 1
1 1
1 1
r T
1 1
1 1
1 1
1 1
1 1
1 1
3I:II:II:I.I:I--—:— ———————————————— JI- __________________________________ L
1 1
1 1
1 1
1 1
1 1
1 1
- +
1 1
1 1
1 1
1 1
! +
1 1
1 1
r T
H
1
1

0.0 =g

iN IR

1
£
b3
%
¥
b
+
1+
1

iy
Ty
'
i
1
+
Iy
1

1

|

1
s
1

1
.F
i
1

:

1
N
.
1

1

1

1

1

1

1

ot ol et et ek e ek ek ek e ek ek ek e ek ek ek ek ek el ek ek ek ek ek ek ek ek ek )

30 1 ENNNNO0e+ 01 ﬂ Failure number




CASRE - Running average Trend Test

L L1 C
I EEASHE HE 3 Time botwoon failures D- Hunning Aritmeti-:: Hen: DACASBEVIADATANzT dat
i _| Eil= Edit Fiters QNEN Model Setup  Flat Plot  Besultz Display  Settings Flot  Results  Display Elemngs Lopy  Help
| Help Bunning average I + Ral + Raw Data
| Error Seconc  Laplace test ill . . . .
_[ No. Last Fz Whde trenltest H R e FOO.0 -y —: —————————————————— : —————————————————— : —————————————————— : - -
' 1 3.000000e+000 1 : ! ! ! !
‘ 2 3.000000e+001 1 | | ! ! i !
| 3 1.130000e+002 1 R R it o J . y :
‘ 4 8.100000e+001 1 | Deg-bmmmmmmmmmm e |TTTTTTTTm e [TTTTT T
l 5 1.150000e+002 1 : : : : - |
\ 6 9.000000e+000 1 ] ! ! ! + !
' 7 2.000000e+000 1 g 50000 -k oo 1! ! ! !
8 9.100000e+001 1 E | I B R T S R et
| 9 1.120000e+002 1 ] | | | | |
10 1.500000e+001 1 @ : 5 : : : ﬁm I
1 1.380000e+002 1 L = ! ! F !
12 5.000000e+001 1 5 1 P e ﬁfﬂf@ ________________ L
1 13 7.700000e+001 1 = : T | | R :
‘ 14 2.400000e+001 1 £ 1. E . | .+ |
15 1.080000e+002 1 R B s | | PR |
| 16 8.800000e+001 1 B : e HE Ao L
17 6.700000e+002 1 @ : £ ! ! * ! !
18 1.200000e+002 1 E 1 £ . . " . .
19 2.600000e+001 1 e [t & I I s I |
| 20 1.140000e+002 1 : | | ﬁ;‘ﬁ | I
2 3.250000e+002 1 | e Il :WH*- ------------- bommmmmmmmmmmmmee - -
22 5.500000e+001 1 | + 1! g ! !
' [23  2.20000e+002 1 Ry ; e ; ;
|| 24 6.800000e+001 1 | L 1. . | ! |
1l 25 a.220000e+002 1 | S o e R R R R -
26 1.800000e+002 1 00l - W R 1. : : :
'—[ 27 1.000000e+001 1 ! L e ! ! !
|| 28 1.146000e+003 1 L) ' ! ! !
|| 29 6.000000e+002 1 B e e [
Lan 16AnNNNe+nnl 1 ;ll " ! ! ! !
b - L) L o L
| @ = z

Failure number




CASRE - Laplace Test

=L

i casR

_| Eile  Edit

Help

Error
Mo.

00 = M L a P =

E

Filterz

Seconds Since
Last Failure

3.000000e+000
3.000000e+001
1.130000e+002
8.100000e+00
1.150000e+002
9.000000e+000
2.000000e+000
9.100000e+001
1.120000e+002
1.500000e+001
1.360000e+002
h.000000e+001
7.700000e+001
2.400000e+001
1.080000e+002
8.800000e+001
6.700000e+002
1.200000e+002
2.600000e+001
1.140000e+002
3.250000e+002
h.h00000e+001
2.420000e+002
6.800000e+001
4.220000e+002
1.800000e+002
1.000000e+001

1.146000e+003
R NONNNNe+002

Trend Model

I [=] E3

Setup  Plot

0.000000e+(
-1.417132e+
-1.845506e+
-1.396476e+
-1.392731e+
-h.583275e-
1.722696e-0
-2.919402e-(
-7.159030e-(
-2.315468e-
-8.018844e-
-6.047994e-(
-6.244071 9e-(
-2.904650e-(
-5.604655e-(
-6.454105e-(
-2.806805e+
-2.617447e+
-2.2078bb6e+
-2.084438e+
-2.502440e+
-2.200693e+
-2.369417e+
-2.117549e+
-2.641037e+
-2.593743e+
-2.223850e+

Laplace
Test

-3.697188e+

-4 nniai np_+lll
H oz

WatTe

IMLaplace Test: D:\CASREV3\DATA\s1.dat
Plot  Besultz  Display  Setting: Copy  Help
+ Faw Data
Reliability growth at §.% significance if y < -1.64485
Reliability decrease at 5.% significance if v » 1.64485
Mo trend in data at 5.% significance if y] < 1.95451
1 1 1 1
2000 e - - - - - - e oo - - o b e e e e e e e - - - U - -
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
4 1 1 1 1
1 1 1 1
000wl —4 - F oo b oo oo -
e : : :
s
RS | | |
1 1 1 1
R 1 1 1
1 + 1 1 1
1+ 1 1 1
'2-':“3“3'"'r"'";ﬂ;;"::ﬁ'f'. """"""""" ittt -
@ 1 o ++F'+ 1 1 1
= ! i + + H 4 1 1
g | + W b | |
\ + T ++ .+ ! !
= 1 o _F' ++"+ 'H+-H'+ 1 1
1 1 1
2L 400y - - - o . . o Ao - - -
Q 1 1 1 1
1 1 1 1
g 1 1 + 1 1
= 1 1 + 1 1
=] 1 1 1 1
— 1 1 + 1 1
T +
R TS S 3 - -
| | fl. s |
1 1 + |+-_|- -F"#h- o+ 1
| | it |
1 1 1 1
1 1 1 + 1
i R R L EEET PR SEEEEEPEEEE FELEEEE - -
1 1 1 1
1 1 1 1
1 1 1 d} 1
1 1 1 1
1 1 1 1
1 1 1 1
ADOD0 w - - o o o oo oo oo b o e m oo oo oo [
1 1 1 1
1 1 1 1
= = = =
s} =1 e}

Failure number




i casr

_| Eile  Edit

Help

Error
Mo.

— —
_— e L R =

— ok mk ko — —
o0 = M b Ma

o Mo Pod Ba B B3 Pa B PRSP
= = = R = I L [ S L LS B — ]

CAS

RE — Select and Run Models

E =] E | [™ Time between failures: D:ACASREVI\DATAAs1 dat

Filters Trend Q&LLEN Setup  Plat Flot  Hesultz  Digplay  Setting: Copy  Help

Select and run models. .. l + FRaw Data |
Seconds Sinc  Define combination 2
Last Failure E dit/remaove models. .. bood R Select and Execute Models
3.000000e+( Parameter estimatiar... ' Selecting Models for Execution
J.000000e+0 SElel_:t Flata 1ange... 1 Available Models Models to Run
1.130000e+0___ Fredictions.. Vod L DLC/SHA B
g.100000e+001 1 | ELC _
1.150000e+002 1 | GE'_]"“‘-?"C >3 Add
9.000000e+000 1 : JF'II‘ISkI'HD[EI‘Idﬂ
2.000000e+000 1 o SO000 b Linear LY
=1 1
9.1 ["]["]I]E‘l'["]1 1 E : Musa Basi[: << RBH‘IDVE
1.120000e+002 1 2 ! Musa-Okumoto |
1.500000e+001 1 n ' NHPP [TBE]
1.380000e+002 1 & 40000 =4 it Quadratic LY -
L.000000e+001 1 s 1
7.700000e+001 1 ‘m |
Hel Cc |

2.400000e+001 1 s _telp_| _Cancel |
1.080000e+002 1 g 0000w -k === - o mm -
2233333“33; } B | Select and Run All Models |

. et =11 1
1.200000e+002 1 E :
Z2.600000e+001 1 EDDD'D'_":' """""""" T"""""';"";:""f """"" P
1.140000e+002 1 : : ¥ : :
3.250000e+002 1 | ¥ . vt :
h.500000e+001 1 ___: _________ o T + ____: _____ + o+ 4 | }
2.420000e+002 1 e N PR e T
6.800000e+001 1 ! o A !
4.220000e+002 1 : A TR e L :
1.800000e+002 1 Dol W, e e e et L
1.000000e+001 1 ; : ; ; ;
1.146000e+003 1 =] = = =2
G.000000e+002 1 . - -
1 ENNNN e+ ] J Failure number




CASRE - Display modelling results

J\-| CASRE M=k

_ File Edit Filterz Trend Model Setup FPlot Plot  Besults 1,
Help Diata and model results

Error Seconds Since Severity .~ Time between failures

< Mo. Last Failure [Eailine eomrts

[ Failure intensity
1 J.000000e+000 1 ' TiestintervallEmgthis ' '
2 3.000000e+001 1 s Cormlafielahres > | jTTTTTTTTTTTTooos '
3 1.130000e+002 1 1 Bieliability. . | |
4 8.100000e+001 1 | : :
5 1.150000e+002 1 soonod L Modelevalustion o e . L.
6 9.000000e+000 1 1 Goodress of fit : |
7 2.000000e+000 1 | Brequential likelitood | + 4 |
] 9.100000e+001 1 " 1 Relative accuracy ' '
9 1.120000e+002 1 g S000.0= - - Modelbiss [T TTTTTTTTTTTTToos T
10 1.500000e+001 1 8 1 Model biaz trend : |
11 1.380000e+002 1 @ | Model biss scatter plot : :
12 5.000000e+001 1 P T . {
13 7.700000e+001 1 £ 1 = : :
14 2.400000e+001 1 B : tadel rankings ’ : :
15 1.080000e+002 1 = 1 ! L, * :
16 8.800000e+001 1 g HO0Df - oo oo IR R EREEEEEE LR v-
17 6.700000e+002 1 5 1 : : :
18 1.200000e+002 1 = 1 : P L :
19 2.600000e+001 1 e e . >
20 1.140000e+002 1 = | Y : :
21 3.250000e+002 1 : : :
22 5.500000e+001 1 1! . H :
23 2.420000e+002 1 1000 D -l m oo oo oo 4 ot k-
24  6.800000e+001 1 1. ¥ " :
25 4.220000e+002 1 | PO o A . . :
26 1.800000e+002 1 0.0 _ ey T E T it ettt .-

[ 27 1.000000e+001 1 " : : :
28 1.146000e+003 1 o = = =

29 6.000000e+002 1 ) - -

__an 1 50NNNNe+NN1 1 = . Failure number




CASRE - Ranking Models

=| CASRE U Model Biaz Trend: D:ACASBEY3\DATAMs1 dat
= =10 x|
_ File Edit Filterz Trend Model Setup Plot Flot  Besultz Dizplap  Settinge: Copy  Help
Help ® Geometric KS Statistic: 0.108435 - No bias trend
Error Seconds Since Severity 4  Qumdro L K8 Seaioio: 0.082265 - o bles rend
—[ Mo. Last Failure
1 3.000000e+000 1 1000 - - - oo m - - N L R bR ;4 - -
2 3.000000e+001 1 | | | | ol
3 1.130000e+002 1 | | | | |
4 8.100000e+001 1 | | | : i
SRR R ank Models !
b 9.0001 :
i 2.0001 Rank Models by Evaluation Criteria ~ Jp---------- - -
8 9.1001 '
9 1.1201 Ranking Priority Relative weights E
}? }ggg: Goodness of fit Iﬁ | |1 000000 | ¥ Use GOF as E
}g ?233: Prequential likelihood |2 | |1 .000000 | first stage :
14 2 4001 _ screening?  f---------- E"
15 1.0801 Model bias 3 | [r.000000 | !
16 8.8001 : . |
17 6 700 Trend in model bias |4 | |1_|]|]|]|]|]|] | |
18 1.2001 . . . . |
19 2 6001 Prediction noisiness |5 | |1.I]I]I]I]I]I] | ___________ 3
20 1.1401 |
21 3.2501 |
22 5.5001 Help | Cancel | 0K | |
23 2.4201 |
24 6.8001 . |
25  4.220000e+002 1 E; ! ! ! !
26 1.800000e+002 1 e pTTTTTTT s jTTTT e Nt "
i 27 1.000000e+001 1 T L T T T
28 1.146000e+003 1 a2 & b £ =
(o} (o] (o] (o] -—
_| Eg ?Egggggg:ggf } j Transformed Failure Probability - y(i)




n Estmation results for growth model selected

Frestimate Main Features

I-I.
TEWaT.

* Frestimate Is a software reliability tool
providing basic software prediction

capabilities.

=naEy X nTrends - = [ 15 [

Estimated MTTF, failure rates

Estimated Inherent Defects 877.5e-1 Diefeef Genelizd

between now and 0

L

General Inputs

tiodel zenzitivity

Other projections
Compare results

Input failures by | | Defects found so farintesting - 63 Edilest
day Estimated Current Failure Rate 6.339637e4 En_d i testlng. ] ec2u2
i Failures Per Bilion Hours
Impoit Falie || Egtimsted Curent MTTF 157.738e-1 Hours
End of Test Faiure Rate 6.339638e4 Failures Per Bilion Hours
Parameter
estimation End of Test MTTF 157.738e2 Hours
Summary results | | Operational Failure Rate 6.339638e4 Failures Per Bilion Hours
of slmadels 1| Operational MTTF 157 73862 Hours

E stimated refiability For mizzion time specified and current failure rate HNot Available

W E stimated refiability for missian ime specified and EQT failure rate Hot Available
E stinnated reliability far mizzion time specified and operational failure rate Mot Available
Feports Estimated availability for current MTTF and MTSWH specified in prediction 0722365
Estimated availability for end of test MTTF 0.9996158
Estinated awvailability for operational MTTF 0.9936158
MTSWH 6.06253
Objective delivered MTTF 1000
Test hours needed to reach objective HNot Available
Defects ta discover to meet objective Hot Available
The failure rate and MTTFz are for theze twpe0nly cataztrophic and critical
Select the model that you want ta see results for -
|Exponential -
Select the curve fitting method -

Best Straight Line
He Least Squares Estimation

___ Maximum Likelihood Estimate

Select a trend

j [~ Show entire growth period

Historical Model C:\Program Files\Frestimate
Demonstration Edition/demoprog.mdb
20000000

B 1 84E53TEHT
15000000 e
Failure s
te in | RE-SE-2t
ra. . 10000000 i tsssssen
billion 135404407
hours 4 =
EUUUUUU B 113me3sE+0T
B 1.015001E+07

B 2055359

0 0 zoveees

B 7208583

Months after delivery




e
FRESTIMATE - topics

|
|

H . Frestimate — prediction/estimation models
 Frestimate versus CASRE/SMERFS




Frestimate: prediction models (1a)

......

Prediction models - regardless of whether they are for
software reliability or any other application - are
developed by collecting trained data and observing
relationships in that features and some outcome. In the
case of software reliability the outcome is delivered
defects normalized by code size.

The features vary from model to model and are generally
related to development practices. Some models have
only one feature. Some models have many features. The
model Is the mathematical expression that determines

- some outcome given some set of features.



Frestimate: prediction models (1b)

......

~» Predictors are used early in the development
lifecycle to:
- Determine whether the current

| capabilities/development practices are suitable for
EE‘ meeting a system reliability objective

- Select the development practices that would allow
the system reliability objective to be met

- Determine whether vendor supplied software will
meet a system objective



Frestimate: prediction models (1c)

......

~» Predictors are used early in the development
lifecycle to:

- Determine suitable quality and reliability objectives
| for the software
ﬂ - Determine staffing requirements for maintenance
and testing

- Predict the inherent number of defects in the
software at the start and end of testing



Frestimate: estimation (1)

......

» Estimation models - are models that project
the future based on what has happened In
the immediate past - on this project.

ﬂ  Estimators do not use trained data like
predictors, they use data collecting only
from the project in which we are interested
IN measuring.



Frestimate: estimation (2)

=G

 Estimators have a variety of purposes
Including:
- Projecting how many more hours of
. testing are needed to reach some
H reliability objective
- Projecting how many more defects

must be detected and then fixed to
reach some reliability objective.

- Validating a reliability prediction



Frestimate / trained data

......

» Because the actual fielded defect density Is
known for the sample, it Is called trained
data.

» By exploring relationships between the
development practices and observed defect
density In trained data, we can develop
mathematical models to predict defect density
for organizations in which the development
practices are known but the defect density Is
not known.



. Rome Laboratory Model (1)

* The Air Force's Rome Laboratory developed
a predictions of fault density that could be
| transformed into other reliability measures such

| l as farlure rates.
o Do e ===

Application Factor
’ Defect denzity bagzeline at start of testing 9 Start of best & Factar
|

—

Defect denzity bazeline at end of testing  0.5226 End of test & fackar

| ' . Corverzion bo KSLOC of aszembler iz applied anly if vou chose to uze Rome Labs application factore 1/ 2176 = 4596

Factors applied to each of the above 2 Application factors

. ‘ D evelopment Metric 1.035714 Dfau:t-:ur Anomaly kMetric 1.1 A Factor 1
" | Complexity ketric 0.9 S Factar|  Quality Reviews Metric 1 4R Factar
| | Traceahility b etric: 1.1 STFactor|  Standards Review Metic 1.5 SR Factar 1

Predicted defect density using the Bome Labsz factors
Defect density at ztart of testing  41.98438 Defect denzity at end of testing 5.304931 26642341

Predicted defect denzity iz in terms of Object Oriented Languange

Help | Frint |




Rome Laboratory Model (2)

......

. A number of factors were selected

CA- Application type (e.g., real-time control systems, scientific,

Information management)

. D - Development environment (methodology, tools, languages),

Requirements and design representation metrics (AM - anomaly

management, ST - traceability, QR - incorporation of quality
review results),

~ Software implementation metrics (SL - language type [assembly,

high-order, object-oriented, etc.), SS - program size, SM -
modularlty, SU - extent of reuse, SX - complexity, SR -
Incorporation of standards review results into the software).

' The initial fault density prediction is given by the product
0y = A*D*(AM*ST*QR)*(SL*SS*SM*SU*SX*SR).



Rome Laboratory Model (3)

......

A prediction of the initial failure rate i1s made as
[Musa] A,=F*K*&,*number of lines of source
code = F*K*W,, where:

¢

= W, is called also ‘The number of inherent faults’
* Fis the linear execution frequency of the program

= K Is the fault expose ratio (1.4E-7<=K<=10.6E-7).
The fault exposure ratio, K, is an important factor
that controls the per-fault hazard rate, and hence,
the effectiveness of the testing of software.




......

The initial failure rate can be expressed also by
letting F=R/I, where :

* R Is the average instruction rate and
~« | Is the number of object instructions in the
2 program,
~and then further rewriting | as 1.*Q,,, where
* |, Is the number of source instructions and

* Q, Is the code expansion ratio (the ratio of
machine instructions to source instructions - an
average value of 4 is indicated).



'Rome Laboratory Model @Frestimate

Select a model for
predicting defects

Bounds on defect d

Defect
denzity

redicting end of test defects

Home |abs model

SEl ChM rodel .
| rdugtry model
Shartcut model
Fullzzale model
Fome Labs model
|1z components
Raome Labs model predicting start of test defects
Clozest databasze match 5

redicting end of test defects

=L

Size in-pl.its required to predict defectzffailure ratefreIiahility!évailahility

Select the units of measzure for defect denzity

KsLOC

Size wizard

2344
2344

Erecutable size
Function Points

on poinks

Critic:al Function Paintz

2344

MNumber of Carnponents |-| 3
Total KSLOC |224
Tatal effective KSLOC
[EKSLOC 224
Critical EKSLOC |2|:|3

Size emor |5 % Size emor due to phase |5p &

IUpdate Component |nfo | [ Use component info  Cornoments List"-.*'iew| Comporents wizard |

Overide

Language Object Oriented Language

j Code expangion ratio

default

& »

Azzembly
Inputs reqy ;

REN RS (hject Oriented Language

Ayerage operating hours [duty cocle] per month

Fielded growth rate [Qdel] between defects and failures

Testing arowth rate [Q0] between defects and failures

Application pe

Inputs required b Ilent sver

C2arC3orC4
MTSWH B.062% E zperimental hardware
Stationery capitol equipment
Lightweight equipment
Small devices
“Wweb Bazed

Inputs required b

R atia af unique defe
R atio af interruption

Objectives - required for trends
MTTF at delivery

Frezstimate metrics

10 MTTF after growth period

‘freliability/ availahility

MNumber months growth after testing ends |49

1600 Druty cycle wizard | Months to nest 12
major release
g Growth penod
q and O Wizard
j Odel confidence |2 575

ed to predict reliability

b duration g

m

o J
|'||:||:|— YWizard




FRESTIMATE ‘against’ CASRE and
SGIyIERFS

Desired Feature

Supports both software reliability
prediction models and estimation
models

Supports multi-parameter prediction
models

Compares your results with other
projects that are similar in application,
SEI CMM level

Has wizards to help you understand
your inputs and outputs

Measures the three P's

Process, People and Product

CASRE, SMERFS

No.

Supports only
estimation models
which are used only
after testing has
started.

No.

No.

No.

No.

Frestimate
Yes.

Has prediction models that can be used before
testing.

Also has estimation models in the
WhenToStop module that can be used duning
testing. You can use one software package
from concept to delivery.

Yes. Multi-parameter models are generally
more accurate then single parameter models.
Frestimate also has 2 single parameter models
in the event that you are short on available

data.

Yes.
Yes.

Yes.



Software Reliability Course - Agenda

......

Motivation

Introduction to Software Engineering
Measuring Software Reliability

Software Reliability Techniques and Tools
Experiences in Software Reliability
Software Reliability Engineering Practice
_essons Learned

Background Literature

e S A e A o



7. Lessons learned

......

* The Increase In software-based systems for
safety functions requires systematic evaluation
of software reliability.

 Software reliability estimation is still an
unresolved issue and existing approaches have
limitations and assumptions that are not
acceptable for safety applications.

 Direct observation of operational behaviour of
the system (e.g. In test or simulation) iIs not
going to give assurance of ultra-high reliability



Tentative summary of the story so far:

i m g
TEWaT.

» Lots of models but no single “best buy”

* The bad news: some models almost universally bad,
all models occasionally bad!

* The good news: some models OK sometimes

« Cannot select a model a priori and trust it to work
(even If it worked well on a previous project, and you
think the current project 1s ‘similar’)

» Be eclectic: try many models on your data and check
for accuracy of predictions

It is USUALLY possible to predict software reliability with

- IREASONABLE accuracy and have SOME CONFIDENCE you have done so.




General conclusions

......

 The bad news ...

No perfect model
No way of selecting the best models a priori
All models sometimes inaccurate

.. the good news ...

Can analyse predictive accuracy dynamically
Recalibration often improve accuracy

Can usually obtain accurate reliability estimates and know
they are accurate

.. and the warning ...

These techniques only work for modest reliability levels

They are essential no way assuring that ultrahigh reliability
has been achieved



b O ST O H B

Why Such Inactivity?

T e ] | .
There are a number of reasons for this inactivity:

 Lack of awareness/training

* Disillusionment following “false starts” with immature

measures and models. “All Models are Wrong - Some are
Useful” (George E. P. Box)

» Too busy grappling with the current crisis to see long term




Software Reliability Course - Agenda

......

Motivation

Introduction to Software Engineering
Measuring Software Reliability

Software Reliability Techniques and Tools
Experiences in Software Reliability
Software Reliability Engineering Practice
Lessons Learned

Background Literature

e S A e A o



\
L 7

SOFTWARE SOFT WARE
s » RELIABILITY a%'oﬁm !

Professional Edition
l&’.-,_. -
L RO John D. Musa
B, ¢ D Anthony [annino Jr '
-------- Kazuhira Okumoto \¥, '
'
-‘v'-t
RELIABILITY AND

MAINTENANCE

R efe re n CeS """""" i — NETWORKS AND SYSTEMS

- ARAY LB RELIABLE
A g " QM SOFTWARE
[ e | \ g M ‘
Hoang Pham -7, & DEVELOPMENT
4 Sy " " S g  AND TESTING
- Frank Beichelt
System Software - ‘
Peter Tittmann
Reliability

Reliability
| Engineering







= l:i ‘Bl}ﬁﬁ&'ﬁl%‘t‘lﬁ

{5 |

o

OTOET T LTO0%

T 4w W £k

T a0

3

Bt
1'%

CETESR SRR SR e EL

1

=
=
=

i

Technical University of Denmark
Department of Informatics and Mathematical Modelling

Software Reliability
Appendix

Professor Florin POPENTIU VLADICESCU
DTU, IMM, Building 305, Tel: + 45 4525 3353
Fax: +45 4588 2673
popentiu@imm.dtu.dk
http://imm.dtu.dk/~popentiu

= l:i ‘Bl}ﬁﬁ&'ﬁl%‘t‘lﬁ

{5 |

o

OTOET T LTO0%

T 4w W £k

T a0

3

Bt
1'%

&
0
[
0
0
*
0
ek
o
-
d
ot
g
<0
3
0

AR LSy %



Cap. 1. Software Reliability Assessment
Cap. 2 NHPP Software Reliability Models
Cap. 3 Software Cost Models

Cap. 4 Some Statistical Approaches




" Monitoring the development
process

- Assuring that the plan is adhered to

- Assuring that the quality of the work is
adequate
What does
‘adequate’

mean

@)
?

The time to think about monitoring is when the project is being planned. This
enables review during the project to ensure that the plan is being adhered to, and
that where divergences become necessary, they do not prejudice achievement of
reliability targets.

Similarly, the definition of adequacy should be agreed beforehand, as should
ways by which the quality of the work will be assessed during development.

It is impossible to define precise relationships between quality achievements
during development, and reliability at the end of development. Nevertheless,
intermediate targets should be set which are acknowledged to be consistent with
the targeted level of reliability. -




THE SOFTWARE LIFE CYCLE

The various phases that software undergoes from inception to ob-

solescence.

Requirements Cafiire
eq’ukmxnnijﬁs ﬁ

(S A==k Ao s =) sk s
(S A==k Ao s =) sk s

b N
b N

N
N

Each product passes through these phases. The duration, sequence, number
of iterations, and exact effect of each stage may vary. -

»
»

b1 ¢)

OO oot
OO oot

b1 ¢)

Different software development process (or life-cycle) models:

IO T T
IO T T

» Waterfall model

¢ Rapid prototyping

¢ Evolutionary development
+ Component reuse

+ Spiral model

« WV model

¢ Formal transformations



SACO0L0LOR00LLLI0L0030L00L0LLLO0L00L0

The need for Software Reliability
“If you don’t test your software,
how do you know it works?”

.@lﬂ*um..m‘w“-mvmn.w M* m m ..HAB- nwﬂ—bnuuu?nwyﬂ.u: uurb- vﬂm. t — —.M‘ﬂ-vmur

o CLEL s

S de B N0




NHPP Software Reliability Models

o S S ek de S S ) ek s

OO oot
o S S ek de S S ) ek s

OO oot

AR
AR

280k
280k

“Every problem has in it the seeds of its solution.

. v e

i T O TN
. v e

i T O TN

If you don’t have any problems, you don’t get any seeds.”



Software Reliability Models with
Environmental Factors

“The whole of science is a refinement of everyday thinking”
Albert Einstein (1879-1955)




A22MBO100QTO0 T,

4

Cap. 1. Software Reliability Assessment
Cap. 2 NHPP Software Reliability Models

S
:
&
<
=
2
B
5
U
5
oo
P
&
O

Cap. 3 Software Cost Models

AR IR H 2R 2 D LD



- - . . - E
. g = <. e
2 P - =

NHPP Software Reliability

Notation

m(t)
a(t)

b(t)
N(t)

V(1)
3
R(s/t)

Models

expected number of errors detected by time t

("mean value function™)
error content function, 1.e., total number of error
in the software including the initial and

introduced errors at time t
error detection rate per error at time t

random variable representing the cumulative
number of software errors detected by time t

actual values of N(t) (v; == y(t)))
actual time at which the j" error is detected
reliability during (t, t+s] given that the last error

occurred at time t

- - . . - E
. g = <. e
2 P - =



EXAMPLE 5.1. The data set in Table 5.1 was reported
by Musa (1987) based on failure data from a real time
command and control system, which represents the
failures observed during system testing for 25 hours of
CPU time. The delivered number of object instructions
for this system was 21,700 and was developed by Bell
Laboratories.

It should be noted that this data set belongs to the
concave class, therefore, it seems reasonable to use the
Goel-Okumoto NHPP model, to describe the failure
process of the software system. From the failure data ,
the two unknown parameters , a and b, can be estimated
as values for the two parameters :

o S A= e A s S ) ek s
o S A= e A s S ) ek s

G=142.3153
h=0.1246

AT
AT

b1 ¢)

DV(T'_J‘IJD

b1 ¢)

DV(T'_J‘IJD

where:

@ is an estimate of the expected number of failures to be
eventually detected

b is the number of faults detected per fault per unit time
(hour). The estimated mean value function and the
software reliability function are:

YaaTawwwe
YaaTawwwe

() =142.3153(1 — e 1)
and

~ -(1423153)[e“°-‘2“’"‘-e'f°-'2‘6)-('+x>]
R(x/t)=¢€

respectively.



where:

s

a is an estimate of the expected
number of failures to be eventually detected

b is the number of faults
detected per fault per unit time (hour). The
estimated mean value function and the
software reliability function are:

m(r) =142.3153(1 — ")

and

—142.315 3{&'

01246 _~01246)1+x)
Rix/t)=e |

respectively.

The above two functions can be used to
determine when to release the software system
or the additional testing effort required when
the system isready for release. Let us assume
that failure data from only 16 hours of testing
are available from the table 5.1 where a total
of 122 failures have been observed:




The above two functions can be used to determine when
to release the software system or the additional testing

i i
%g' effort required when the system is ready for release. Let 'ég“
P us assume that failure data from only 76 hours of testing g
0 are available from the table 5.1 where a total of 122 )
g failures have been observed: i
-0
g Table.5.1 Failure data in a one-hour interval and number e
- of failures g
gy Hour Numberof | Cumulative failures go
g failures gb"
= 1 27 27 i
g 2 16 43 g
P 3 11 54
9 4 10 64 :
- 5 1 75 (v
0 6 7 82 ;‘D
(] 7 2 &4 of
o0 8 5 89 o
s} 9 3 92 :.g
:H 10 1 03 :H
n 12 7 104 e
;: 13 2 106 e
= 14 5 11 &3
- 15 5 116 o - s =
16 6 122
17 0 122
18 3 127
19 1 128
20 1 120
21 2 131
a2 1 132
23 2 134
24 1 135
25 1 136




o S S ek de S S ) ek s

i o14) ) - =
: oo

N Rix/H=e

Based on these data and using MLE method values for
the two parameters are:

4 =138.3779 and b=0.1334

The estimated mean value function become:

m(t) =138.3779(1 — e )

Thus the reliability of the system 1s :

~(138.3779) [e~{ﬂ-1334]~r _ g~ (0.1334)(r+x) ]

o S S ek de S S ) ek s

i o14) ) - =
: oo



0
*
i
4o
-
0
B
&0
0
-
o+
:
D)
b
0
s
0
iy
70
0
s
"4
o
iy
o
)
ot
&0
<0
o
.

Table 5.2. Software reliability performance measures.

Testtime |a b Remaining Reliability
(T) erTors R(0.1/T) R(1/T)
16 138.3779 0.1333 16.3780 0.8049 0.1294
17 133.7050 0.1432 11.7050 0.8466 0.2096
18 141.2543 0.1274 14.2544 0.8349 0.1817
19 139.7190 0.1304 11.7190 0.8591 0.2386
20 138.8495 0.1323 9.8495 0.8786 0.2951
21 140.3408 0.1290 9.3408 0.8871 0.3228
22 140.1002 0.1296 8.1002 0.9010 0.3737
23 141.9104 0.1255 7.9104 0.9060 0.3933
24 142.0264 0.1252 7.0265 0.9162 0.4372
25 142.3153 0.1246 6.3154 0.9248 0.4772

-
*
4
€
-
0
e
:0
0
-
o+
f
20
v
0
s
i
iy
w0
a
2k
8
o
iy
e
)
ot
&0
0
Ty
.




e i ot s =] =

efEEe

| '%"#’&*ﬁﬁ

-w

NHPP S-Shaped Model

In the NHPP S-shaped model, the software reliability
growth curve is an S-shaped curve which means that the
curve crosses the exponential curve from below and the
crossing occurs once and only once. The detection rate of
faults, where the error detection rate changes with time,
become the greatest at a certain time after testing begins,
after which it decreases exponentially. In other words,
some faults are covered by other faults at the beginning
of the testing phase, and before these faults are actually
removed, the covered faults remain undetected. Yamada
(1984) also determined that the software testing process
usually involves a learning process where testers become
familiar with the software products, environments, and
software specifications. Several S-shaped models
(Yamada, 1984; Pham, 1997) such as delayed S-shaped,
infection S-shaped, etc., will also be discussed in this
section.

The NHPP S-shape model is based on the following
asumptions:

1. The error detection rate differs among faults.

2. Each time a software failure occurs, the software error
which caused it is immediately removed, and no new
errors are introduced.

This can be shown as the following differential
equations:

e i ot s =] =

efEEe

&
;
=



SR OEBRORE

T

TOOorIcT

S

om(t)

o b(v)a - m(t)], (1)

where

a = expected total number of faults that exist in the

software before testing
b(t) = failure detection rate, also called the failure

intensity of a fault
m(t) = expected number of failures detected at time t.

The above differential equation can be easily solved and
is given by

m(t)=ajl—-e °®

(2)

SR OEBRORE

TOOorIcT

T

S




NHPP Inflection S-shape Model

The inflection S-shaped model (Ohba, 1984) is based on
the dependency of faulis by postulating the following
assumptions:

1. Some of the faults are not detectable before some
other faults are removed.

2. The probability of failure detection at any time is
proportional to the current number of detectable faults
in the software.

3, Failure rate at each detectable fault is constant and
identical.

4. The isolated faults can be entirely removed.

Assume

b
b(t) = ——
© 1+Be™ - (1)
where the parameters b and P represent the failure-
detection rate and the inflection factor, respectively.
From Eq. (5.15), the mean value function is given by:

m(t) = (1-e™) _

2
1+Be™ (2)
This model is called the inflection S-shaped NHPP
model (Ohba, 1984).




oo o TOR TR o aYosOTonTo

] =

The failure intensity function is given by:

ab(1 +B)e™
(1+pe™f 3)

We then obtain the expected number of remaining errors
at time t

ML) =

1+BE™
m(m)—mm%% “

For type 1 data, the estimate of parameters a and b for
specified [ using the MLE method can be obtained by
solving the following equations simultaneously:

oo Yall+Be™)

(1- c'b’fn} (5)
and
n t-ﬂ_h" - t-_lﬂ_MH ﬁt-f‘-—ml Bt_ Ie'b“iq
TS i i + i + i
E(Y. 3’1-1{ ot = o 1+Be™  1+pe ™™

_Yautie " (1-B+2Be ™)
C o (1—e ™)1+ Be™) (©)

Similarly, for type 2 data, the estimate of parameters a
and b for specified B using the MLE method can be
obtained by solving the following equations:

oo o TOR TR o aYosOTonTo

] =



(7)

n(l+Be™)
1 _ e-bﬂn

.=
z

eSS s S b HRH B A G AR U R/ L0 R At e D L O .

(8)

Je—hsi
Be™

Bs,
+

i=1 1

Y5 +2)

n
i=1

.
p

nsne"““ (1+p)
(1—e ™ )(1+pe ™)

eSS s S b HRH B A G AR U R/ L0 R At e D L O .



NHPP Delayed S-Shape Model

We now discuss a stochastic model for a software error
detection process based on NHPP in which the growth
curve of the number of detected software errors for the
observed failure data is S-shaped, called delayed S-
shaped NHPP model (Yamada, 1984). The software error
detection process described by an S-shaped curve can be
characterized as a learning process in which test-team
members become familiar with the test environment,
testing tools, or project requirements, 1.¢. their test skills
gradually improve. The delayed S-shape model is based
on the following assumptions:

1. All faults in a program are mutually independent from
the failure detection point of view.

2. The probability of failure detection at any time is
proportional to the current number of faults in a
software.

3. The proportionality of failure detection is constant.

4. The initial error content of the software is a random
variable.

5. A software system is subject to failures at random
times caused by errors present in the system.

6. The time between failures (i-1)" and i" depends on the
time to the (i-1)™ failure.

7. Each time a failure occurs, the error which caused it is
immediately removed and no other errors are
introduced.




TOTooT OO TOR YR oY oTOT oo o

Assume
bt
L bt+1 ()

where b is the error detection rate per error in the steady-
state. The mean value function can be obtained as:

m(t) = a[1 - (1+btye ™| : @)

which shows an S-shaped curve. This model is called the
delayed S-shape NHPP model for such an error detection
process, in which the observed growth curve of the
cumulative number of detected errors is S-shaped
(Yamada, 1983). The corresponding failure intensity
function is:

A(t) = ab*te™ (3)
The reliability growth of the software system is:

R(Slt) — e-[m(t+s)—m(t)] = e—a[(l«{-bt)e'm_(|+b(l+s))e-b(|+;)]

4)

The expected number of errors remaining in the system
at time t is given by:

n(t) = m(e0) — m(t) = a(1+ bt)e ™ )

TOTooT OO TOR YR oY oTOT oo o



For type 1 data, the estimate of parameters a and b using
the MLE method can be obtained by solving the
following equations simultaneously:

_. Y
- bre™)] (6)

and

}rntnzc'b" z": l:y :-,rl,lll: B b —t l-uz"""’] 7
= +bre™)] &by e (b7

Similarly, for type 2 data, the estimate of parameters a
and b for specified B using the MLE method can be
obtained by solving the following equations:

n
“[1-+bs,e™)] ®

and

2 -
on nbs_‘e™™

b H s ] ©)




EXAMPLE 5.2. The small on-line data entry software
package test data, available since 1980 in Japan (Ohba,
1984), is shown in Table 5.3 (data set #5). The size of the
software has approximately 40,000 LOC. The testing
time was measured on the basis of the number of shifts
spent running test cases and analyzing the results. The
pairs of the observation time and the cumulative number
of faults detected are presented in Table 5.3.

Table 5.3. On-line data entry software package test data

OO OTOETT A oOTOToOToOn T o
OO OTOETT A oOTOToOToOn T o

(data set #5)
Time of observation Cumulative number of failures
1 2
2 3
3 4
- 4 5 .
: 5 7 :
v 6 9 v
o 7 11 o
' 8 12 1
S 9 19 S
“ 10 21 “
330 11 22 330
ok 12 24 ok
ok 13 26 o
o 14 30 Y
in 15 31 in
(i 16 37 (i
™ 17 ™
e g a e
e 19 42 0
e 20 45 e
<[ 21 46 <]




The MLEs of the unknown parameters a and b for the
delayed S-shaped NHPP model are

a=71.725
b=0.104.

The estimated mean value function m(t) is
m(t)=(71.725)[1-(1+0.104t)e %]
Figure 5.1 shows the analysis results using the delayed S-

shaped NHPP model. We can see that the model fits the
observed failure data well in this set.




50
451
40 t
351
301

v
~

5101)3

Days

S8 8822 AN AR 3000 8 A L LD LI DA,

FiG. 5.1. Mean value function versus actual error data.

S8 8822 AN AR 3000 8 A L LD LI DA,




o aTORT YT AR E R on Y

Cap. 1. Software Reliability Assessment
Cap. 2 NHPP Software Reliability Models

Cap. 3 Software Cost Models

Cap. 4 Some Statistical Approaches

o aTORT YT AR E R on Y



Software cost models

In defining important software cost factors, a cost model
should help software and managers answer the following
questions:

1. How should resources be scheduled to ensure the
on-time and efficient delivery of a software
product?

2. Is the software product sufficiently reliable for
release (e.g. have we done enough testing?)

3. What information does a manager or software
developer need to determine the release of software
from current software testing activities?

(o S e e = b e s R =) = s
(o S e e = b e s R =) = s

-
-

AR
AR

»
»

3£

OO OO
OO OO

3£

Testing cost
Cost

.o

. £ TN
.o

. £ TN

Penalty cost




SACOL0LO0R00L L LI 0L0030L00L0LLLOLO0L0"

PN N L S

Apoauoour Jous ue Surxy jo Apqeqoxd
a1 pue JOU3 Ue 3UINI JO 1500

PN N L S

Function System  Acceptance test

Unit

g
&

reviews

test and in use

test test

Fig. 3.10 Relationships between error correction and time.

-

SACOL0LO0R00L L LI 0L0030L00L0LLLOLO0L0"

-



SIS 1 R0 R R B A0

g

@
Q
O

SIS 1 R0 R R B A0

Design  Coding  Testing Operation

Analysis

A RO AP e Sl e D L KR A N o

Fig. 3.15 Software cost versus the development phase.

A RO AP e Sl e D L KR A N o



5
2
B
=
=
8
15
:
:
;
5
E
w2
o
o
-
2
b=

Mul 3 mrwn-muw-nwyﬂﬁmﬂ_wnwlqo

A

Errors detected

Errors introduced

Lifecycle phase

220030308001 L L3 01L000

(%)

(%)

55

18
10
50
22

30

Analysis
Design

3 1. O3

L% I3 -r-lb"—\

10

Coding and testing

Operations

DH;AU..—.UOHLU

L% I3 -r-lb"—\

G ”u”n‘vc n-r.Hﬂ.uH‘ﬂq

G ”u”n‘vc n-r.Hﬂ.uH‘ﬂq




A Software Cost Model with Risk
Factor

The expected software system cost, E(T), is defined as:
(1) the cost to perform testing; (2) the cost incurred in
removing errors during the testing phase; and (3) a risk
cost due to software failure.

a. The cost to perform testing is given by
E;fTJ=C;T.

b. The expected total time to remove all N{T) errors is

o S S e s S e ) e s

TOoOOoOTOOOOT
o S S e s S e ) e s

TOoOOoOTOOOOT

b 2
b 2

iR
iR

T
E[ ZY.] = EIN(DE[Y, ]=m(T)p,

3k
3k

Hence the expected cost to remove all errors detected
by time T can be expressed as

€1 T 4 T WL
€1 T 4 T WL

3
3

N(T)

E,(T)= C?_E[ 2}1] = Cym(TH,

Cl
c
e

¢. The risk cost due to software failure after releasing
the software is

Ey(T)=C;[1- R(x|T)]

where C; is the cost due to software failure.



The following notations and basic assumptions are
applied throughout this chapter.

Notation

m(T) expected number of errors to be detected by
time 7

a total number of software errors to be eventualy
detected

b exponential index

MT) fault detection rate per unit time or intensity
function

X mission time

R(x/T) reliability function of software by time 7 for a
mission time x

O g aTsaRenYS

O g aTsaRenYS

v / software release time ¥
g Cl software test cost per unit time g
¢0 2 _— ¢0

- C2 cost of removing each error per unit time ,
a, during testing a

g E(T)  expected total cost of a software system by g

v time T o
v 5 5 . y
0 4 time to remove an error during testing phase 0
0 Hy expected time to remove an error during testing 50

3 phase which is E(Y) 3

General assumptions:

1. The cost to perform testing is proportional to the
testing time.

2. The cost to remove errors during the testing phase is
proportional to the total time of removing all errors
detected by the end of the testing phase.

3. There is a risk cost related to the reliability at each
release time point.



4. The time to remove each error during testing
follows a truncated exponential distribution.

5. Without loss of generality, the Goel-Okumoto
NHPP model will be used as a reliability function.

Let Y be a random variable of time to remove an error.
Based on assumption (4), the probability density
distribution of Y is given by

where T is the maximum time to remove an error. The
expected time to remove each error is

OO OTOETT A oOTOToOToOn T o
OO OTOETT A oOTOToOToOn T o

€1 T % v v Ok
€1 T % v v Ok

= B(r)= | ys(o)

0 0
2 2
“0 2 @

gl" — ‘T - Y he”™ dy ':’8
ick? :

¥ * faeaz < !
v 0 0
ik After simplifications we obtain i

c‘ai;c!-(

=
0
.
<0

1-(AT, +1)e™®
ST Ty O

<0
;;F
o

X ey

In
b
<
o



R EEE

frBRdoTab o aTARTYYEEYE

Therefore, the expected total software cost can be

expressed (Zhang, 1998) as:
E(T)=CT +CAm(T)u, + C;[1- R(x|T)}
The mean value function m(T) is
m(T)=a(l-e")
The error detection rate function is
MT) =abe™
and the reliabiﬁty of the software is

R(x | T)= E—[m{i"ﬂ]-m(’-"}]

= o L—m-'_ E—bl{fu}]

(4)

&)

(6)

(7

R EEE

rBRdoTab o aTARTYYEEYE



Example 6.1 Assuming a software failure data is given
in Table 5.1, the parameters of the Goel-Okumoto model

using MLE is given by:

b -

a=142.32, b=0.1246

The mean value function becomes
m(T)=a(l-e™)=142.32(1-e*"**"),

Given C,=$25, C;=$200, C5=$7,000, p,=0.1, and x=0.03.
The results are shown in Table 6.1.

The optimal release time in this case is T'=21.5 hours
and the corresponding expected total cost is $3,600.49, If
we increase the value of C; from $7,000 to $10,000, we
expect to have a longer testing time. In this case
(C;=9$25, C,=8200, C3=%$10,000, p,=0.1, and x=0.05), the
optimal release time is T =27 hours and the
corresponding expected total cost is $3,723.95.

Table 6.1. Optimal release time for C;=$235, C;=5200, C:=57,000, pu,=0.1,
and x=0.05

Release time T (hours) Expected total cost
: E(T)($)
19.5 3.607.34
20.0 3,604.47
20.5 3,602.39
21.0 3,601.07
21.5° 3,600.49
22.0 3,600.60
22.5 3,601.39
23.0 3,602.81

23.5 3,604.83




3 &y

. v e
£ TN

S e el A e N S ) e s

WL E L
T

D.(T:J'u'l:l

A Generalised Software Cost
Model

Notations:

Cp  set-up cost for software testing

C; cost of removing an error per unit time during the
operational phase

C; loss due to software failure

W  variable of time to remove an error during the
warranty period in the operation phase

W, expected time to remove an error during the
warranty period in the operation phase, which is
E(W)

T, period of warranty time

o the discount rate of the testing cost

Additional Assumptions:

(6)
)

®)
&)

There is a set-up cost at the beginning of the
software development process.

The cost of testing is a power function of the testing
time. This means that at the beginning of the testing,
the cost increases with a higher gradient, slowing
down later.

The time to remove each error during the warranty
period follows a truncated exponential distribution.
The cost to remove errors during the warranty
period is proportional to the total time of removing
all errors detected between the interval of (T,T,,).

3 &y

S e el A e N S ) e s

WL E L
T

D.(T:J'u'l:l

. v e
£ TN



Similarly, from assumption 8, the truncated exponential
density function of error removal time during the
warranty period is

-Aw
q( w} = fwe—“
Jﬁ 5 g for O=W<Ty'. (8)
0

L

Therefore, the expected time to remove an error during
the warranty period is

1=(AT, + e
T A(—e™my ©)

W

The expected software system cost comprises of the set-
up cost, the cost to do testing, the cost incurred in
removing errors during the testing phase and during the
warranty period, and the risk cost in releasing the
software system by time T. Hence, the expected total
software system cost E(T) can be expressed as follows
(Pham, 1999):

E(T)=Cy + C,T* + Cam(T)py + C3[m(T+T,,) - m(T)] M
Cy[1-R(x|T)],

where 0<c<l1. (10)




Example 6.2 Considering a set of testing data given in
Table 5.1 and Example 6.1, the mean value function is

m(T)=142.32(1-¢'2*7),

Given C;=$50, C,=$25, C5=$100, Cs=$1,000, p,=0.1,
n.=0.5, x=0.05, 0=0.05, and T =20. We obtain the
following results in Table 6.2.

The optimal release time in this case is T*=24.5 and the
corresponding expected total cost is $1,836.15.

o S S ek de S S ) ek s
o S S ek de S S ) ek s

o o
i Table 6.2. Optimal release time for Co=$100. e
Fo -
E T*(hours) | E(T)($) E
i 225 | 1,843.31 0
3 23.0 | 1,843.31 “
= 235 | 1,839.52 2

?E 24.0 1,837.17 %

24.5% 1,836.15

25.0 1,836.39

2.5 1,837.82

26.5 1,840.35

26.5 1,843.93



O T aYaTaTenYs

t) =l =

Example 6.3 Given C;=$50, C,=%$25, C5=$100,
C=$10,000, u,=0.1, p,=0.5, x=0.05, 0=0.05, and
Tw=20. Using Theorem 6.2, we obtain the results in

Table 6.3.
The optimal release time in this case is T*=30.5 and the
corresponding expected total cost is $3,017.13.

Tablz 6.3. Optimal release time for Co=%1 00

T*(hours) | E(T)($)

28.5 3,029.72
29.0 3,024.41
295 3,020.60
30.0 3,018.20
30.5* 3,017.13
31.0 3,017.30
31.5 3,018.64
32.0 3,021.09
32.5 3,024.57

O T aYaTaTenYs

t) =l =



T3 :
B AMB0 100 30 L0016 30
. i

Cap. 1. Software Reliability Assessment
Cap. 2 NHPP Software Reliability Models

Cap. 3 Software Cost Models

1A LM 000

[ = )
s

—~ :
EENCEER o
. i




Null Hypothesis

The practice of science involves formulating
and testing hypotheses, assertions that are
capable of being proven false using a test of
observed data. It is important to understand
that the null hypothesis can never be proven.
A set of data can only reject a null hypothesis
or fail to reject it. For example, if comparison |
of two groups (e.g.: treatment, no treatment) | |
reveals no statistically significant difference i
between the two, it does not mean that there is Bl
no difference in reality. It only means that B
there is not enough evidence to reject the null R

hypothesis (in other words, one fails to reject =
the null hypothesis) [



Statistical significance

In statistics, a result is called statistically
significant if it is unlikely to have occurred by
chance alone , according to a pre-determined
threshold probability, the significance level.

One often rejects the null hypothesis when the
p-value is less than the significance level o
(Greek alpha), which is often 0.05 or 0.01.
When the null hypothesis is rejected, the result
is said to be statistically significant.



P values

Definition of a P value

Consider an experiment where you've
measured values in two samples, and the
means are different. How sure are you that the
population means are different as well? There

are two possibilities:

. The populations have different means.

. The populations have the same mean, and
the difference you observed i1s a
coincidence of random sampling.

The P value is a probability, with a value
ranging from zero to one. It is the answer to
this question: If the populations really have the
same mean overall, what is the probability that
random sampling would lead to a difference
between sample means as large (or larger)

than you observed?




P values

How are P values calculated? There are
many methods, and you'll need to read a
statistics text to learn about them. The
choice of statistical tests depends on how
you express the results of an experiment
(measurement, survival time, proportion,
etc.), on whether the treatment groups are
paired, and on whether you are willing to
assume that measured values follow a
Gaussian bell-shaped distribution.



Common misinterpretation of a P value

Many people misunderstand what question a P
value answers.

If the P value 1s 0.03, that means that there 1s a
3% chance of observing a difference as large
as you observed even if the two population
means are identical. It is tempting to conclude,
therefore, that there 1s a 97% chance that the
difference you observed reflects a real
difference between populations and a 3%
chance that the difference is due to chance.
Wrong. What you can say is that random
sampling from identical populations would
lead to a difference smaller than you observed
in 97% of experiments and larger than you
observed in 3% of experiments.

You have to choose. Would you rather believe
in a 3% coincidence? Or that the population
means are really different?




Statistical hypothesis testing (I)

The P value is a fraction. In many situations,
the best thing to do is report that number to
summarize the results of a comparison. If you
do this, you can totally avoid the term
"statistically significant”, which is often

misinterpreted.

In other situations, you'll want to make a
decision based on a single comparison. In
these situations, follow the steps of statistical

hypothesis testing.

1. Set a threshold P value before you do the
experiment. Ideally, you should set this
value based on the relative consequences
of missing a true difference or falsely
finding a difference. In fact, the threshold
value (called alpha) is traditionally almost

always set to 0.035.




-

Statistical hypothesis testing (II)

2. Define the null hypothesis. If you are
comparing two means, the null hypothesis

is that the two populations have the same

mean.
3. Do the appropriate statistical test to

compute the P value.
4. Compare the P value to the preset
threshold value. If the P value 1s less than

the threshold, state that you "reject the null
hypothesis" and that the difference is
"statistically significant". If the P value is
greater than the threshold, state that you
"do not reject the null hypothesis" and that

the difference is "not statistically
significant".




DOF — Degrees Of Freedom

In statistics, the number of degrees of freedom is the number of
values in the final calculation of a statistic that are free to vary.

http://en.wikipedia.org/wiki/Degrees_of freedom_9%o628statistics%629

A data set contains a number of observations, say, n. They constitute n |
Individual pieces of information. These pieces of information can be

used either to estimate parameters or variability. In general, each |
Item being estimated costs one degree of freedom. The remaining @]
degrees of freedom are used to estimate variability. &

-~ Asingle sample: There are n observations. There's one parameter (the

mean) that needs to be estimated. That leaves n-1 degrees of freedom

- for estimating variability.

. Two samples: There are n,+n, observations. There are two means to
be estimated. That leaves n,+n,-2 degrees of freedom for estimating
variability.



OLOOLOLOADOL L LA OLONID0LO0LE L L LOLOOLO

EOC — End Of Course!

OLOOLOLOADOL L LA OLONID0LO0LE L L LOLOOLO




	Popentiu coperta curs.pdf (p.1)
	Course SRE-actual-slides=359.pdf (p.2-360)

