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Software Reliability - Course Objectives

• Measuring software reliability

• Generic approach and specific models

• Evaluating predictions

• Capabilities and limitations

• Reliability assessment in the life-cycle

• Data collection

• Unanswered questions



Software Reliability Course - Agenda

1. Motivation

2. Introduction to Software Engineering

3. Measuring Software Reliability

4. Software Reliability Techniques and Tools

5. Experiences in Software Reliability

6. Software Reliability Engineering Practice

7. Lessons Learned

8. Background Literature



1. Motivation

• Introduction

• Errors, faults and failures

• Faults and failures: examples

• Actual software disasters

• The relationship between faults and failures

• Case Study – Therac 25

• When are software faults introduced?

• What is reliability?

• What is dependability?

• Dependable systems

• Hancock’s Half Hour!



What is “Software”?

•An abstract digital definition of system behaviour.

•Made concrete by compilation and loading.

•Defines much of system internal state.

•Includes interfaces (H/W-s/W, HCI, etc.).

•Includes documentation.

•May be firmware, microcode, operating system, 

application.

•System may consist of H/W, S/W, or both.



Why use software?

•Light

•Easily modified

•Supporting hardware very reliable

•Demand for “smart” systems



How Hard is Software ?

Software is so hard that –

• £1billion is spent annually in the UK on software

•Over half this is wasted!

“Waste” includes:

•Cost of overruns

•Cost of correcting errors

•Penalty due to not using quality assurance procedures

•“unnecessary” expenditure on maintenance.



What is reliability?  

Two senses:

• General: The ability of a 

system to perform a required 

function under given 

conditions for a specific time 

interval.

• Precise: The probability that 

a system will operate without 

failure under given 

conditions for a specific time 

interval.



The “Software Crisis”

OVER due, OVER budget, UNDER quality

•Society is increasingly dependent on complex digital 

systems

•They are delivered late

•They cost more than was planned

•They are not good enough

- don’t meet their functional requirements

- unreliable, unsafe, insecure, unusable, not 

maintainable

In particular, they are “undependable”



• Software reliability is rarely of concern to most 

people until something goes wrong. 

• Physical system components deteriorate over time, 

while software does not. 

• However, unlike a human operator, software does not 

adapt well to situations which were not anticipated by 

its designers, and such failures can prove enormously 

costly.



Does Software Reliability Make Sense?

• Developers, users and military organizations are often 

concerned about the reliability of systems that include 

software.  

• Over the years, reliability engineers have developed 

detailed and elaborated methods of estimating the 

reliability of hardware systems based on an estimate 

of the reliability of their components.  

• Software can be viewed as one of those components, 

and an estimate of the reliability of software is 

considered essential to estimating the reliability of the 

overall system.



Hardware/Software differences

•Hardware is manufactured

- Designed once

- Many imperfect copies

•Software is “all design”

- Design transformed into code

- Many perfect copies

•Every software product is a “prototype”



Hardware/Software maintenance

Hardware maintenance

- System “down” until repaired

- Corrective maintenance restores system to “good as 

old”

- Design change difficult

- Requires movement of men and material

Software maintenance

- “Transient” failures

- Corrective maintenance improves system design

- Design change easy

- Requires movement of information



Errors, faults, and failures

• Error: Designer’s mistake

e.g. failure to distinguish signed and absolute value numbers in an algorithm 

• Fault: Encoding of an error into software

e.g. ‘X:=Y’ is coded instead of ‘X:=ABS(Y)’

• Failure: Deviation of the software from its specified delivery or service 
(incorrect output or timing of output)

e.g. nuclear reactor exhibits behaviour likely to be an earthquake hazard.

Error                                       Fault                                           Failure

can lead to can lead to



Failures of Complex Systems (1)

“Physical” failure:

•Hardware component breaks.

•Cause is physical (e.g., wear-out, overload, 

corrosion).

•“fault” appears in system at that point in time.

•Fault may cause failures unless “masked” by 

“redundancy”.

•System repaired by replacement of broken 

component.

•System is thereby restored to its previous good 

state.



Failures of Complex Systems (2)

Design failure:

• defect in design

• cause is intellectual (bad requirement, careless 

design)

• fault is present in system, but “latent”

• may cause failure with some inputs or internal 

states

• repair by changing design

• system is different from its previous “bad” state 



System Failure



Attributes of failures, faults and changes



Failures and faults

•A failure corresponds to unexpected run-time 

behaviour observed by a user of the software.

•A fault is a static software characteristic which causes 

a failure to occur.

•Faults need not necessarily cause failures. They only 

do so if the faulty part of the software is used.

•If a user does not notice a failure, is it a failure? 

Remember most users don’t know the software 

specification.
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Failure classification

Failure class Description

Transient Occurs only with certain inputs

Permanent Occurs with all inputs

Recoverable System can recover without operator 

intervention

Unrecoverable Operator intervention needed to 

recover from failure

Non-corrupting Failure does not corrupt system state 

or data

Corrupting Failure corrupts system state or data



Failure consequences

• Reliability measurements do NOT take the 

consequences of failure into account.

• Transient faults may have no real. 

consequences but other faults may cause data 

loss or corruption and loss of system service.

•May be necessary to identify different failure 

classes and use different measurements for 

each of these.



The relationship between faults and failures

(MTTF = Mean Time To Failure)

Sample from 9 major software products, each with many 
thousands of years logged use world-wide.

Ref: Adams E., Optimizing preventive service of software products”, IBM J Research & 
Development.

Very rare faults 

MTTF > 5000 

years

Rare faults 

1600 < MTTF < 5000 years
Fairly rare faults 

500 < MTTF < 1600 years

Faults with 160 < MTTF < 500 years

Faults with 

50<MTTF<160 years

Common faults: MTTF < 50 years



• Software faults persist even in 
well-debugged programs. 
Edward N. Adams of IBM 
found that bugs that remained in 
a system were primarily “5000-
year” bugs – that is, each of 
them would produce a failure 
only once in 5000 years (top). 
Such faults make debugging an 
exercise in diminishing returns: 
in the test of a military 
command-and-control system 
(bottom), the time needed to 
remove the bugs begins to 
outpace by far the resulting 
improvement in the estimated 
reliability, measured in terms of 
estimated achieved MTTF. 

• For visual clarity, the graphs 
have been plotted on different 
time scales.

• Source: Littlewood B., Strigini 
L., The Risks of Software, 
Scientific American, Nov., 
1992, 62-75.  

Diminishing returns



Faults and failures: examples

• Therac 25
Failure: man killed by huge overdose of therapeutic radiation.

Fault: improper echoing of keyboard commands on VDU.

• NASA probe to Venus
Failure: prove went off course and was lost.

Fault: in the navigational FORTRAN code the statement .

DO 3I=1.3 was written instead of DO 3I=1,3.

• A320
Failure: An A320 crashed in India killing 92 people.

Fault: ?????

(see the story of the Ariane Flight 501, 1996: 
http://www.youtube.com/watch?v=IONcgYzVFlg)

http://www.youtube.com/watch?v=IONcgYzVFlg
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Software disasters   

• Therac 25

‾ Software controlled radiation therapy.

‾ Software interlock governed high/low beam strength.

‾ Interaction of operator error and software fault -> high strenth beam. 
without shield in place

‾ Killed 2, injured others.

• Citibank (1989)

‾ Electronic funds transfer through CHAPS.

‾ Interaction of operator error and design fault -> wrong date supplied.

‾ Repeated previous day’s transfers.

‾ Money recovered within 2 days!



Case study: Therac 25

• Radiotherapy machine failure

- 2 deaths, several injuries 

• 2 modes of operation

- X-ray: high-intensity beam strikes tungsten target

- electron: low-intensity beam with target retracted

- treatment programmed using monitor and keyboard 

• The accidents

- high-intensity beam, with target retracted

- “Malfunction 54”

• The trigger

- use of              to correct a typing error



Therac 25 Failure  

• Location: East Texas Cancer Center

• Timing: 21 March 1986 (#treatment hours unknown)

• Mode: ‘Malfunction 54’on operator screen

• Effect: Beam strength too great by factor of 100

• Mechanism: Use of up arrow key corrupted internal 

software variable

• Cause: Unintentional design fault

• Severity: Critical (loss of life)

• Cost: Financial loss in 

litigation/investigation

You cannot predict what you cannot measure!



http://www.imm.dtu.dk/English/Teaching/IMM%20Courses.aspx?coursecode=02228
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Why is Software So Bad? 

It is essentially difficult:-

•Novel

•Complex

•Discontinuous

•“Invisible”

•Hard to predict

•Hard to measure

It is also NOT ENGINEERED



Novelty by design                  (1) 

Novel designs give nasty surprises!

•“Traditional” artefacts “evolve” gradually:-

-bridges: standard designs “off the shelf”

-cars: most design features go back 100 years

-even so,  disasters occur: Tacoma, Tay

•Software has been around for only 60 years:-

-few “standard” design

-frantic rate of change



Novelty by design                  (2)

Novel designs give nasty surprises!

•New problems generate new solutions 

•Every software product is a “prototype”:-

-unique, even though many identical copies 

exist 

-each program is only developed ONCE 

(unlike widgets: developed once, produced 

in millions)



Complexity

The human mind cannot cope with complexity

•Software is the most complex thing ever made

•Difficult to visualise

•Unstructured

•10.000.000 lines of source is common

•Absorbs most intellectual effort in system 

development



Discontinuous Behaviour

Software is discrete

•Billions of internal states

•Most of them can given rise to failure

•Impossible to test exhaustively

- too many paths

- too many internal states

- too many input cases

- non-deterministic behaviour

•When things go wrong, the go VERY wrong



The “Craft” Approach

Software has tended to be a cottage industry:-
•Produced by creative effort

- more like writing a novel than engineering

- written by geniuses for geniuses

- “How dare you criticise my creation?”  

•Invisible

- “Why should you read my code?”

- “Of course its all right! I wrote it! I tested it!”

- “You’re crushing the butterfly’s wing of my creativity!”

•This is WRONG attitude for an engineer!

- Weinberg: “Ego – less programming”

- Professional maturity

- Even you can make mistakes!



What is “dependability”? 

Defined as:

“The extent to which the user can justifiably 
depend on the service delivered by a system.”

J-C. Laprie: Dependability: basic concepts and 
terminology

Important concepts: “required service”, “user”, 
“system”

“Umbrella” term: not measurable attributes

Different authors use different sets of attributes 
(Laprie, BS5760)



Definitions of dependability attributes 

“RAMURSES”

Attribute … … defined as ability of a system to …

Reliability: … deliver required service 

Availability: … be in an “up” state

Maintainability: Corrective… be repaired to remove faults

Adaptive … be modified for new environment

Perfective … be enhanced to improve service

Usability: … provide ease of access for user 

Recoverability: … resume service after failure

Safety: … be used without accident

Efficiency: … complete task within given resources

Security: … resist unauthorised interference



Dependable systems  

We need depend on systems. They must be:

Reliable: Deliver the required service under given time.

Safe: Must not kill people.

Secure: Must not allow unauthorised access.

Usable: Must be “friendly”: easy to learn and use.

Maintainable: Must be quick to recover after failure, and easy to 

repair so that they do not fail again.

Available: Must be ready for use a high proportion of time.

Extendable: Must be easy to enhance to perform new functions.



How to make software-based systems 

more dependable

Fault avoidance: Good management

Disciplined process

Careful requirements capture & design

Fault removal: Design and code inspection

Static analysis

Testing

Fault tolerance: Defensive design: “belt & braces”

Diverse redundant modules

Manual back-up

Dependability 

measurement:

Realistic trial

Collect data (failures, faults, operating time)

Analyse data to evaluate “RAMURSES”
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IEC 61508 Standard
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Hancock’s Half Hour   

Tony Hancock: “But I’ve just 

been throttled half to death by 

a flamin’ python! Why won’t 

the insurance company pay 

out?”

Sid James: “Well, you see, they 

only insured you against 

accident, but the snake meant 

it!”



Software Reliability Course - Agenda

1. Motivation

2. Introduction to Software Engineering

3. Measuring Software Reliability

4. Software Reliability Techniques and Tools

5. Experiences in Software Reliability

6. Software Reliability Engineering Practice

7. Lessons Learned

8. Background Literature



2. Introduction to Software Engineering

• The phases of a software project

• Types of software

• Achieving software reliability: diverse sources 

of information

• Products, processes, and resources

• Achieving software reliability: diverse 

approaches 



What is “Software Engineering”

• Application of mathematical, scientific, 

organisational principles

• Concept, design, implementation, maintenance

• Achieve adequate quality with given time and 

resources

• Large projects



The Phases of a Software Project   

• Enthusiasm

• Disillusionment

• Panic

• Collapse

• Search for the guilty

• Punishment of the innocent

• Rewards and honours for those not involved 



Types of software  

• Games

• Working machine programs

• Operating systems

• Commercial applications

• Process control

• Embedded military & nuclear

• Flight-critical (‘Fly-by-wire’, e.g. A330-340)

What is ‘quality’ in each case?

‘Quality is conformance to requirements’. Philip B. Crosby

‘Quality is free, but only to those who are willing to pay 
heavily for it’ T. DeMarco and T. Lister , Peopleware : Productive Projects and 
Teams, 2nd Ed. by Tom Demarco, Timothy R. Lister , ISBN: 0932633439 

So what are the requirements?

‘Horses for courses!’

http://www.softwarequotes.com/showquotes.aspx?id=604&name=T.%20DeMarco%20and%20T.%20Lister


Software Development Phases   

• Concept

• Software Requirements

• Top Level Design

• Detailed Design

• Code/implementation

• Unit/development Test

• System/verification/validation 
Test

• Operational Test

• Operation



Software Development Overview



When are software faults introduced?

Requirements faults give most serious failures but …

… can we ensure against failures that are “deliberate”?

Requirements: Gripen: “control laws”, ICL (Fujitsu Service) 

“usability problems”

System design: Therac: no fault-tolerance (H/W interlock)

Software 

specification:

Mariner: missing “bar” in mathematical formula

Coding: Mercury orbiter: “dot for comma”

Compilation: Pascal compilers: -ve exponential, floating 

point I/P

Maintenance: LAS(2): London Ambulance Service “memory 

leak”





System Requirements Analysis

•Establish need and feasibility

-Overall functional requirements

-Dependability requirements

-Cost and schedule constraints

•Subsystem/component breakdown

-Identify system elements

-Define the process carried out by each

-Define interfaces

-Apportion dependability among elements

•Identify software elements

-Define software FRs and NFRs

-Initial statement of software requirements

-Develop software requirements specification



Reliability specification

•Reliability requirements are only rarely 

expressed in a quantitative, verifiable way.

•To verify reliability metrics, an operational 

profile must be specified as part of the test plan.

•Reliability is dynamic – reliability specifications 

related to the source code are meaningless.

•No more than N faults/1000 lines

•This is only useful for a post-delivery process 

analysis



Specification validation

• It is impossible to empirically validate very 

high reliability specifications.

• No database corruption means PODOF of less 

than 1 in 200 million.

• If a transaction takes 1 second, then simulating 

one day’s transaction takes 3.5 days.

•It would take longer than the system’s lifetime 

to test for reliability.



Steps to reliability specification

•For each sub-system, analyse the consequences 

of possible system failures.

•From the system failure analysis, partition 

failures into appropriate classes.

•For each failure class identified, set out the 

reliability using an appropriate metric. Different 

metrics may be used for different reliability 

requirements.



Examples of a reliable specification

Failure 

class

Example Reliability 

metric

Permanent, 

Non-corrupting

The system fails to operate with 

any card which is input. 

Software must be restarted to 

correct failures.

ROCOF

1 occurrence/1000 

days

Transient,  

Non-corrupting

The magnetic stripe data cannot 

be read on an undamaged card 

which is input

PODOF

1 in 1000 transactions

Transient, 

corrupting

A pattern of transactions across 

the network causes database 

corruption

Unquantifiable! 

Should never happen 

in the lifetime of the 

system



Reliability and formal methods (1)

•The use of formal methods of development may 

lead to more reliable systems as it can be proved 

that the system conforms to its specification.

•The development of a formal specification 

forces a detailed analysis of the system which 

discovers anomalies and omissions in the 

specification.

•However, formal methods may not actually 

improve reliability.



Reliability and formal methods (2)

•The specification may not reflect the real 

requirements of system users.

•A formal specification may hide problems 

because users don’t understand it.

•Program proofs usually contain errors.

•The proof may make assumptions about the 

system’s environment and use which are incorrect.



IV & V

• Independent Verification and Validation

- Two contractors: developer and monitor

- Commercially independent

- Monitor has no vested interest in delivery

- Access points contractually defined

• Advantages

- Checker is well-motivated

- Diversity of approach

• Disadvantages

- Expensive (up to 60% on contract)



VALIDATION AND VERIFICATION

Verification: Are we building the product right?

Validation: Are we building the right product?



Verification & Validation

The System may have been verified;

Have we built the system “correctly”?

But inadequately validated?

Have we built the “correct” system?

This is often satirised by customer’s remark:

It’s just what I asked for, but not what I want!



Testing Strategies

•Dynamic testing Vs Static testing (static analysis)
-in dynamic testing, the test data is executed on real machine

•Black Box Testing Vs White Box Testing
-in black box testing, test cases are derived from the 

specification or requirements without reference to the code 

itself or its structure

-in white box testing, test data are derived from the internal 

program structure

•Testing Random
-using test cases in which all the test data are random 



Testing has many purposes…

•Reliability testing – measuring reliability

•Acceptance testing – fit for delivery?

•Unit testing – modules working on isolation?

•Integration testing – modules working as a 

system?

•Etc…



… but only one goal

To discover faults

•A successful test is one which establishes 

the presence of one or more faults in the 

software being tested.



Remember …

… testing aims to find faults.

… testing is finished when the acceptance criteria 

have been met – not when the time runs out.

… the importance of test specification and 

planning.



FAGAN INSPECTION
M.E. Fagan, IBM

-Hardware inspection methods applied to software

-In use since early 70’s

-Shown to be effective

-Larger award to originator

Highly formalised

-Formal committee

-Two readers, independent of author

-Record defects, don’t argue about repairs

-Declined preparation time

-Defined rate of reading

-Defined pass criteria

Generates statistics
-Defects found in each module

-Defects found per K lines

-Defects found at each inspection

-Estimate efficiency of detection

-Estimate remaining defects/KLOC



FAGAN INSPECTION TEAM



Testing after development

•Acceptance testing

- Completed system Vs requirements of real user

•Alpha test

- User and developer test system using real data

•Beta test

- Release of product to a section of the market for real use

•Installation testing

- Tests to check on the installation process

•During use

-Using spare capacity to do additional automatic testing



SOFTWARE COST AND SCHEDULE









Cost, Schedule, Quality

Managing any project is a juggling act:

Deliver adequate quality, on time, within budget

Cost -Resources are always finite

-Plant, raw materials, effort

-Job must be done within budget

Schedule -Time is limited

-Delivery dates, market opportunities

-Job must be done by deadline 

Quality -Nothing is ever perfect

-Reliability, functionality, shininess

-Product must be good enough (“fit for 

purpose”)



SEI – Capability Maturity Model

• CMM was developed by Software Engineering Institute and it 
is a strategy to improve software quality by improving the 
process by which software is developed. The five levels of 
CMM and their characteristics are given below:

Maturity Level Characterization

Maturity Level 1 (Initial) Adhoc process: Cost, schedule and quality 
are unpredictable

Maturity Level 2 (Repeatable) Basic Project Management: Planning and 
tracking can be repeated

Maturity Level 3 (Defined) Process Definition: The process is stable 
and repeatable

Maturity Level 4 (Managed) Process measurement: The process is 
measured and operates within measured 

limits

Maturity Level 5 (Optimizing) Process Control: The focus is on 
continuous process improvement



Software Quality Models



ISO 9126: Software Product Evaluation (1)

Quality characteristics and guidelines for their use

The chosen characteristics are:

Functionality

Reliability

Usability

Efficiency

Maintainability

Portability

Each is defined as ‘a set of attributes that bear on …’.

e.g. Reliability is ‘a set of attributes that bear on the capability of 

software to maintain its level of performance under stated 

conditions for a stated period of time.’ 



ISO 9126: Software Product Evaluation (2)



The Cleanroom Approach (1)

• The Cleanroom process was originally 
developed by Harlan Mills from IBM 
Fellow Department.

• The name Cleanroom was chosen to evoke 
the cleanrooms used in the electronics 
industry to prevent the introduction of 
defects during the fabrication of 
semiconductors.



The Cleanroom Approach (2)

• The Cleanroom software engineering 
process is a software development 
process intended to produce software 
with a certifiable level of reliability.

• The focus of the Cleanroom process 
is on defect prevention, rather than 
defect removal.



The Cleanroom Approach (3) 

The first two principles of the Cleanroom process 

are:

- Software development based on formal 

methods

- Incremental implementation under statistical 

quality control: The quality of each 

increment is measured against pre-

established standards to verify that the 

development process is proceeding 

acceptably.



The Cleanroom Approach (4) 

The third principle of the Cleanroom process is:

- Statistically sound testing: Based on the 

formal specification, a representative subset 

of software input/output trajectories is 

selected and tested. This sample is then 

statistically analyzed to produce an estimate 

of the reliability of the software, and a level 

of confidence in that estimate.



Software Engineering Assessment   

“You can’t control what you can’t measure.”

Tom De Marco: “Controlling Software Projects”

“If You Can't Measure It, You Can't Manage It”

Peter Drucker !



Software Reliability Engineering 

• A reliability objective
is the  specification of 
the reliability goal of 
a product from the 
customer viewpoint.

• The operational profile
is a set of disjoint 
alternatives of  system 
operational scenarios 
and their associated 
probabilities of 
occurrence.  

• Reliability modeling is 
an essential element of 
the reliability 
estimation process.



Developing an operational profile  

1. Find the customer profile

2. Establish the user profile

3. Define the system-mode 

profile

4. Determine the functional 

profile

5. Determine the operational 

profile itself 

Customer
   Profile

User Profile

System-mode
       Profile

Functional Profile
•# Functions  , Environ. Variables
•Initial List    ,   Final Function List
•Explict/Imp. , Occurrence Probs.

• Divide Exec. into runs   ,   Partition input space
• Identify input space       ,   Occurrence Probabilities

Operational Profile

Test Selection

Developing an operational profile for a system 

involves one or more of the following five 

steps:



Statistical testing

•Testing software for reliability rather than fault 

detection.

•Test data selection should follow the predicted usage 

profile for the software.

•Measuring the number of errors allows the reliability 

of the software to be predicted.

•An acceptable level of reliability should be specified 

and the software tested and amended until that level 

of reliability is reached.



Statistical testing procedure

•Determine operational profile of the 

software.

•Generate a set of data corresponding to this 

profile.

•Apply tests, measuring amount of execution 

time between each failure.

•After a statistically valid number of tests 

have been executed, reliability can be 

measured.



Statistical testing difficulties

•Uncertainty in the operational profile

•This is a particular problem for new systems with no 

operational history. Less of a problem for replacement systems.

•High costs of generating the operational profile

•Costs are very dependent on what usage information is 

collected by the organisation which requires the profile .

•Statistical uncertainty when high reliability is 

specified
•Difficult to estimate level of confidence in operational profile

•Usage pattern of software may change with time.



Operational profile generation

• Should be generated automatically whenever 

possible.

• Automatic profile generation is difficult for 

interactive systems.

• May be straightforward for ‘normal’ input but 

it is difficult to predict ‘unlikely’ inputs and to 

create test data for them.



Achieving Software Reliability: diverse sources 

of information

Resources Processes Products

PEOPLE FORMAL DEVELOPMENT DOCUMENTS

TOOLS DESIGN TEST PLANS

TECHNIQUES TEST PROOFS

STANDARDS REVIEW MEETINGS MEETING MINUTES

QUALITY PLANS … …

…

High 

quality 

softwarePersonnel experience/skill

Quality of tools/techniques

…

Test results …

Verification arguments

Use of certain techniques 

…

Structural information

Measures

…



Products, Processes, and Resources   

• Resource: an item which is input to a process 

- people, hardware, software, etc.

• Process: a software related activity or event

- testing, designing, coding,

• Product: an object which results from a process

- test plane, specification and design documents, source and 
object code, minutes of meetings, etc. 

Resources Processes
Products



Achieving software reliability: 

diverse approaches 

High 

quality 

software

Fault 

avoidance
Fault 

removal

Fault 

tolerance

Formal methods

Object oriented design

Structured 

design/analysis

Structured programming

…

N-version programming

Recovery blocks

Error masking

…

Black box testing

White box testing

…

Reviews/inspections

Statistical QC

Measurement

…



WHY USE FAULT TOLERANCE

-Avoidance and Removal never perfect

-Residual faults always possible

-Must prevent residual faults causing failure

-Only way to achieve ultra-reliability(?)



SOFTWARE FAULT TOLERANCE 

PROBLEMS



http://www.imm.dtu.dk/English/Teaching/IMM%20Courses.aspx?coursecode=02228
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Software Reliability Course - Agenda

1. Motivation

2. Introduction to Software Engineering

3. Measuring Software Reliability

4. Software Reliability Techniques and Tools

5. Experiences in Software Reliability

6. Software Reliability Engineering Practice

7. Lessons Learned

8. Background Literature



3. Measuring Software Reliability

• Measures of software reliability

• Software measurement

• Software engineering assessment

• Definition of software reliability

• Software reliability: measurement

• Predictive measures

• Reliability models



Key points (1)

• Reliability is usually the most important 

dynamic software characteristic.

• Professionals should aim to produce reliable 

software.

• Reliability depends on the pattern of usage of 

the software. Faulty software can be reliable.

• Reliability requirements should be defined 

quantitatively whenever possible.



Key points  (2) 

• There are many different reliability metrics. 

The metric chosen should reflect the type of 

system and the application domain.

• Statistical testing is used for reliability 

assessments. Depends on using a test data set 

which reflect the use of the software. 

• Reliability growth models may be used to 

predict when a required level of reliability will 

be achieved.



The predictor distribution of time to 

failure (TTF).

Software reliability growth models yield predictor 

distribution of time to failure (TTF). From this we can 

derive: 

- Probability of mission success

- Median TTF (sometimes Mean)

- Hazard rate (ROCOF)

- Expected no. of faults detected

- Expected further execution time required to achieve 

the above.



Software Measurement  

• Perfection cannot be guaranteed

- Proof is fallible

- “Good practice” may not be good enough

- “No faults found” does not mean “No faults 

left”

• Must measure quality 

- measure dependability dynamically

- under realistic conditions

- collect data



Definition of software reliability  

• The reliability of a  software item is the probability 
that the system of which it is part will operate, without 
failure due to the activation of a fault in the software, 
under given conditions for a given time interval.

- Probability: Subjective degree of belief

- Failure: Departure of system behaviour from what is 
required

- Fault: Design defect due to human error

- Conditions: Defines “mode of use” of software

- Time: “Execution time” (measure of software use) 



Software reliability measurement   

• Software reliability measurement is always a 

prediction problem: how is the software likely to 

behave from now given its past record of failures.

• We can predict future failures well if we have 

observed past failures frequently.

• This does not help us with high reliability 

requirements. How reliable is a system which has not 

failed for 10,000 hours of use?

• The system requirement for the A330 is MTTF of 109

flying hours. The software requirement is higher. How 

can we certify this system?



Prediction versus estimation (1)  

• The major difference between software 
reliability prediction and software reliability 
estimation is that predictions are performed 
based on historical data while estimations are 
based on collected data.  

• Predictions, by their nature, will almost 
certainly be less accurate than estimations.  
However, they are useful for improving the 
software reliability during the development 
process.



Prediction versus estimation (2)

• If the organization waits until collected data is 

available (normally during testing), it will 

generally be too late to make substantial 

improvements in software reliability. 

• The predictions should be performed 

iteratively during each phase of the life cycle 

and as collected data becomes available the 

predictions should be refined to represent the 

software product at hand.



Predictive measures 

• Predictive measures invariably require a 

prediction system.

• A prediction system consists of a mathematical 

model, together with a set of procedures for 

determining unknown parameters, and 

interpreting results. The procedures are 

stochastic.

The model alone is insufficient; using the

same model will yield different results if

we use different prediction procedures.



Reliability Measurement Goal   

• Reliability measurement is a set of mathematical 

techniques that can be used to estimate and predict the 

reliability behavior of software during its development 

and operation.

• The primary goal of software reliability modeling is to 

answer the following question:

“Given a system, what is the probability that it will 

fail in a given time interval, or, what is the 

expected duration between successive failures?”



Software reliability predictions   

• Software reliability prediction is performed at each phase of 
the software development process up to software system test. 

• Software reliability predictions are made during the software 
development phases that precede software system test, and are 
available in time to feed back into the software development 
process. The predictions are based on measurable 
characteristics of the software development process and the 
products produced by that process.



Probabilistic modelling

• Why are statistical methods necessary?
• Why reliability?
• What is the nature of the failure process?
• …  of the debugging process?
• How can we measure, predict?

• Why do we want to measure it anyway? Some potential benefits:
- some software is safety-critical (A330-340, Sizewell B)
- all software needs to be sufficiently reliable (warranties? 
support costs? etc)
- methodology for a rational choice between SE technologies (eg 
are formal methods the most cost-effective way of achieving R?)
- management tool for scheduling and monitoring software 
development (is project on time?)



Finding errors: does it increase or decrease your 

confidence in the software reliability?

“The number of errors detected by the verification process attest 
to the effectiveness of the software development principles ... 
Significantly enhance the probability of achieving essentially 
error-free software.”

(Westinghouse commenting on their work on the Sizewell B 
nuclear protection system.) 



Refined data for software reliability models

• Failure time data

- List of interfailure times

* execution time between activation of 

successive new faults

• Failure count data

- Count of new faults activated, and total 

execution time accumulated, in successive 

calendar periods



Why probability? 

• A computer is a deterministic machine – why don’t we know when it will fail 
next?

• There is intrinsic uncertainty
- about the sequence of inputs it will receive
- about where faults lie
- about the effect of attempts to remove faults

• We need probability to describe such uncertainty 



Uncertainty Modelling

Modelling type 1 
uncertainty is easiest. 
Seems plausible to 
assume IF encountered 
purely randomly:
• Time to failure is 

exponential
F(t) = Pr (T<t) = 1-e-t

f(t) = F’(t) = e-t

R(t) = e-t

How to model type 2 
uncertainty: the way in 
which the value of 
changes as debugging 
proceeds.



Types of uncertainty   

There is intrinsic uncertainty about future failure 
behaviour because of:

1. Uncertainty about the operational environment:  
even if we knew IF we would not know when it 
would be encountered next.

2. Uncertainty about the effect of fault-removal:
- we never know whether a fix is successful
- even if it is successful, we do not know how 
much it improves overall reliability.

Models must be judged by their ability to capture both 
sources of uncertainty

Frequentist for 1, but not for 2?



A conceptual model of the software failure process

• In summary: 

- debugging creates a sequence of programs 

p(1), p(2), …

- there is a sequence of failure subsets IF(1), 

IF(2), …

- these have ‘sizes’ represented by random 

variables (1), (2), …

- distribution of Ti is exponential with rate (i).



Software reliability metrics   

Metric Definition Formula
Reliability

R(t)

The probability that a given piece 

of software will execute without 

failure in a given environment for a 

given period of time

Mean time to failure

(MTTF)

The time which is expected to 

elapse between the current time and 

the next failure

Median m This term implies the point of 

statistical distribution that a given 

quantity is equally likely to fall 

either side of

F(m) = 1/2 

Rate of occurrence of 

failures ROCOF (t)

The current rate at which failures 

are occurring (t)=f(t)/R(t)

( ) ( )

        =1 ( )

        =1 ( )

R t P T t

F t

P T t

 



 

0

( )MTTF tf t dt



 

Note: F(t) is called distribution function of the random variable T; 

its probability density function is f(t)=F’(t)



Reliability metrics

•Mean time to failure

•Measure of the time between observed failures

•MTTF of 500 means that the time between failures is 500 

time units

•Relevant for system with long transactions e.g. CAD 

systems

•Availability

•Measure of how likely the system is available for use. Takes 

repair/restart time into account

•Availability of 0.998 means software is available for 998 

out of 1000 time units

•Relevant for continuously running systems e.g. telephone 

switching systems



Software reliability

•Cannot be defined objectively

•Reliability measurements which are quoted out of context are not 

meaningful

•Requires operational profile for its definitions

•Requires operational profile defines the expected pattern of 

software usage 

•Must consider  fault consequences

•Not all faults are equally serious. System is perceived as 

more unreliable if there are more serious faults.



Reliability economics

•Because of very high costs of reliability 

achievement, it may be more cost effective to 

accept unreliability and pay for failure cost.

•However, this depends on social and political 

factors. A reputation for unreliable products may 

lose future business.

•Depends on system type – for business systems 

in particular, modest reliability may be adequate.



Reliability measurement

•Measure the number of system failure for a given 

number of system inputs

•Used to compute POFOD

•Measure the time (or number of transactions) between 

system failures

•Used to compute ROCOF and MTTF

•Measure the time to restart after failure

•Used to compute AVAIL



Reliability growth (faults found, failure rate)



Reliability growth (failure rate)   



Random-step reliability growth   



Bathtub curve



Reliability prediction   



Software failure rate - example   

http://www.ece.cmu.edu/~koopman/des_s99/sw_reliability/



Reliability improvement  

• Reliability is improved when software faults 
which occur in the most frequently used parts 
of the software are removed.

• Removing x% of software faults will not 
necessarily lead to an x% reliability 
improvement.

• In a study, removing 60% of software defects 
actually led to a 3% reliability improvement.

• Removing faults with serious consequences is 
the most important objective. 



Some parametric software reliability 

models

! Remember that the problem is 
one of prediction. This entails 
the following triad:

1. The model itself, which gives a 
complete probability 
specification of the process (eg 
the joint distribution of {Ti}, 
with unknown parameters, say )

2. An inference procedure for the 
unknown parameters of 1 based 
on realisations (data) t1, t2, …, tn

3. A prediction procedure which 
combines 1 and 2 to make 
predictions about future 
behaviour

Notice that:

• Disaster can strike at 

any (or all) of these

stages!

• A “good” model seems

necessary for good 

prediction, but is not 

sufficient

• All models are “wrong”

(but some are more 

wrong than others!) 

• Various solutions to 2, 

eg ML estimation, eg 

Bayesian posterior 

distribution

• ditto for 3, eg 

substitution of  ML ests., 

eg Bayesian predictive 

Distributions.



Jelinski-Moranda [JM] model (1)   

This assumes:
 t1, t2, t3 ,…  are independent random 

variables
 Type 1 uncertainty: ti is 

exponentially distributed, parameter 
i

 Type 2 uncertainty: i=(N-i+1), 
where N is the initial number of 
faults (finite) and  is contribution 
to overall failure rate of each fault. 

 No fault introduction while 
correcting detected faults: each 
activated fault is corrected before 
new executions

 Inference by ML, prediction via 
‘plug-in’ rule. 

 R(ti)=exp(-iti) is the reliability 
function



Jelinski-Moranda [JM] model (2)   



Jelinski-Moranda [JM] model (3)  



Jelinski-Moranda [JM] model (4)  



Jelinski-Moranda [JM] model  (5) 



Why is JM always optimistic ?     (1) 



Why is JM always optimistic ?     (2) 



Why is JM always optimistic ?     (3) 



Criticisms of [JM] model   

• Foundational assumptions unrealistic: true fault 
rates differ by orders of magnitude.

• Parameter estimates of N (by ML) have poor 
properties:

- often seriously underestimate N (even N! –
factorial!)

- sometimes goes to infinite (essentially) when no 
evidence of reliability growth in the data)

• Shall show reliability predictions are poor: 
usually grossly “optimistic”. 



Musa model [M]

• Assumptions similar to the Jelinski-Moranda 
model.

• Parameters definition: M0 = number of faults in the 
software; N0 = number of failures; B = fault 
reduction factor:  number of faults / number of 
failures; C = compression factor (execution time in 
operation / in test);  = fault manifestation rate.

• (i) = B C  (N0-i+1)

• N(t) = N0[1 - exp (-B C  t) ] = number of failures 
observed at t ( execution time)



Littlewood [L] Model  

• The main hypotheses are the following:

- At a failure, the fault is removed with certainty

- Faults manifest themselves at times that are independently 

exponentially distributed

- The rates of these faults come from (, ) distribution

• Notations and relations:

- N is the initial number of faults

- i represents the (random variable) rate associated with fault 

i (in arbitrary labelling).

- i = 1 + 2 + … + N-i+1 1

1
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The LSE are those N, ,  chosen to minimize

The system of equations to be solved in order to find
LS estimates is:





Littlewood-Verrall [LV] Model

• Stochastic relationship between the successive failure 
rates. During correction it is possible to remove a fault 
or to introduce a new one. 

• Randomness of inputs:  f(ti| i) = i exp(- iti), the 
probability density function for i is (, (i)), where 
(i) captures the programming difficulty and the 
programmer skills. Usually, (i) = 1+2 i.

• Parameters: , 1, 2

• Relations: 

i(t) = /(t+(i)), 

MTTFi = (i)/(-1).



[LV] – LS estimates

The LSE’s are obtained by the minimization of:

In the case of linear assumptions for (i), the
following system of equations is necessary to be
solved:
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Keiller-Littlewood [KL]

[KL] is similar to [LV], except that reliability growth is 

induced via the shape parameter of gamma distribution for the 

rates:  

Predictions of the unknown parameters can be obtained 

by Maximum Likelihood approach.



The Poisson model (time related)

• The main hypotheses are the following:

1. N(0) = 0

2. The occurrence of an fault is independent of 

previous faults; the future is independent of the 

past

3. Not more than one fault can occur in the time 

interval (t, t+dt); simultaneous events are 

‘impossible’

4. The rate of occurrence of failures (ROCOF) is 

0

[1 event in ( , )]
lim ( )
dt

P t t dt
t

dt









The NHPP distribution

• The occurrence of faults are described by the 

non-homogeneous (NHPP) distribution: 

where m(t) is the mean (expected) number of 

faults occurring in the interval (0, t): 

( )( )
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Goel and Okumoto [GO]   

• GO model is a NHPP 
variant of JM model.

• ROCOF is 

(t) =  exp(-t), 

where t is total elapsed time 
since debugging began,  is 
the final number of faults 
that can be detected by the 
testing process, and  is a 
constant of proportionality, 
can be interpreted as the 
failure occurrence rate per 
fault. 

• Prediction involves ML 
estimation of  and , then 
substitution.



Goel-Okumoto [GO] – Assumptions (1)

•The software is operated in a similar manner 

as the anticipated operational usage.

•The number of errors (f1, f2, …, fm) detected in 

each of the respective time intervals (0, t1), (t1, 

t2), …(tm-1, tm) are independent for any finite 

collection of increasing sequence of times.

•Every error has the same chance of being 

detected and is of the same severity as any 

other error.



Goel-Okumoto [GO] – Assumptions(2)

•The cumulative number of errors detected at any 

time t, N(t), follows a Poisson distribution with mean 

m(t). The mean m(t) is such that the expected number 

of error occurrences for any time (t, t+t) is 

proportional to the expected number of undetected 

errors at time t.

•The expected cumulative number of errors function 

m(t) is assumed to be a bounded, nondecreasing 

function of t with m(t)=0, t=0; m(t) = a, t goes to 

infinity: m(t)=a(1-exp(-bt)), b is a constant of 

proportionality.





[GO] – ML estimates

Let fi=N(ti)-N(ti-1), Pr{N(t)=n}=m(t)nexp(-m(t))/n!. The likelihood 

function is:
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NHPP – S Shaped Model

• Failure intensity: 

(t) = a b2 t exp(-bt) 

• Parameters to be estimated: a, b

• Cumulative number of failures: 

M(t)=a[1-(1+bt)exp(-bt)]



Software Reliability Course - Agenda

1. Motivation

2. Introduction to Software Engineering

3. Measuring Software Reliability

4. Software Reliability Techniques and Tools

5. Experiences in Software Reliability

6. Software Reliability Engineering Practice

7. Lessons Learnt

8. Background Literature



4. Software Reliability Techniques and Tools

• Kolmogorov-Smirnov (KS) Test

• The U-plot

• The Y-plot

• The Prequential Likelihood Ratio

• The Laplace test, Running Average, TTT, 
MIL HD Test, Noise

• Recalibration

• Combination of predictions



Kolmogorov-Smirnov (KS) Statistics

• Uses the absolute vertical distance between two 
CDFs to measure goodness of fit.

• Depends on the fact that:

where F0 is a known, continuous CDF, and    

is the sample CDF, is distribution free.

(CDF – Cumulative Distribution Function)

• Dn is independent on 
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Critical 

Values 

for KS-

test:

If Dn is less than 

the established 

criteria, the 

model fits the 

data 

adequately.



The u-plot (1)

The “u-plot” can be used to assess the 

predictive quality of a model

• Given a predictor,       , that estimates the 

probability that the time to the next failure is 

less than t.  Consider the sequence

where each  ui is a probability integral 

transform of the observed ti using the 

previously calculated predictor      based upon 

t1, t2, …, ti-1. 

ˆ ( )iF t

ˆ ( )i i iu F t

ˆ
iF



The u-plot (2)

• If each        were identical to the true  Fi

then the   ui would be realizations of 

independent random variables with a 

uniform distribution in [0,1].

• The simplest question to answer is 

whether their distribution is close to U 

by plotting their sample cdf: we call this 

the u-plot.

ˆ
iF



How to draw a u-plot



Y-plot



The y-Plot for the LV and JM models 

(Littlewood, 1981)



Detecting consistent ‘bias’ and inappropriate

‘noisiness’ in a prediction system (1)



Detecting consistent ‘bias’ and inappropriate

‘noisiness’ in a prediction system (2)



Prequential Likelihood Ratio

• The pdf for       for Ti is based on observations t1, t2, …, ti-1.  

• For one-step ahead predictions of Tj+1, Tj+2, …, Tj+n , the 
prequential likelihood is:

• Two prediction systems, A and B, can be evaluated by 
computing the prequential likelihood ratio:

• If PLRn approaches infinity as n approaches infinity, B is 
discarded in favor of A.
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Using PLR as a device for comparing two 

prediction systems, A and B



Reliability trend analysis – Laplace test



Laplace test - Interpretation

This test analyses the trend of the failures. One can 
extract two types of information from such a graph : 
local and global changes. 
When the values are positive (resp. negative), the 
reliability is globally increasing (resp. decreasing). 
On the other side, when the values are increasing 
(resp. decreasing), we have local variations of the 
reliability.

• If U is approximately equal to zero, it indicates a lack 
of trend,

• If U is greater than zero, the TBFs are decreasing,

• If U is less than zero, the TBFs are increasing.



General trend – Local trend





TTT plot – Total Time on Test

•The TTT plot is basically a 

scaled version of the graph 

consisting of the points (i, Ti). 

•Is defined as a plot of the 

points (i/n, Ti/Tn), for i=1, 2, 

…, n.

•A necessary but not sufficient 

condition for this notion of 

reliability growth is that the 

graph of the TTT plot should 

be below the diagonal.
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The MIL-HDBK-189 Test (1)

The MIL-HDBK-189 trend test is a conditional statistical 

test based on the power-law process:

where a and b are the model parameters which are positive. 

If b<1 then (t) decreases, meaning that the failures tend to 

occur less frequently (and the system shows reliability 

growth). 

If b>1, then the system shows reliability decrease.  When 

b=1 the homogeneous Poisson process case is obtained.
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The MIL-HDBK-189 Test (2)

Considering the event {Tn = tn}, the MLE of b of a failure 

truncated power-law process is given by

Under the null hypothesis of b=1 it follows that 2n/b

2(2(n-1)). If the alternative hypothesis is two-sided, 

then the null hypothesis is rejected if

or

where        denotes the -percentile of the chi-squared 

distribution with  degrees of freedom. For large values 

of   the null hypothesis is rejected in favor of reliability 

growth.
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Model noise



Recalibrating Software Reliability Models

This method was introduced by Brocklehurst, Chan, Littlewood 

& Snell (NASA-CR-166407), and can be summarized as 

follows.

The relation between true distribution Fi(t) of the random 

variable Ti, and the predicted one,         , can be represented  

through a relation function Gi as Fi(t) = Gi(        ), where Gi is 

only slowly changing function with i. Since Gi is not known, it 

will be approximated with an estimate G* which will lead to a 

new prediction:

This technique recalibrates the raw model output           related 

to the accuracy of past predictions.
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Combination of predictions

• Our previous recommendation was: ‘pick the model 

which had performed best in the past, and use it for 

the next prediction’.

• This seems unduly ‘rejecting’ of models which are 

only slightly inferior to ‘the best’.

• Why not combine predictions from different models 

in some optimal way? cf pooling of ‘expert opinion’.

• For two candidate models, A and B, could take 

as a ‘meta-predictor’; similarly for more than two.



How should the weights be selected ‘optimally’?

• For a prediction at stage i, i.e. of ti, let {wk} take 

values that maximise the PL of the combined 

predictor over previous predictions

in the case of two prediction systems.

• This is computationally intensive, but seems to 

work quite well.



How well do these work?

• Sometimes dramatic disagreement between model 
predictions on the same data source.

• No universally accurate model.

• No way of selecting a model a priori and being 
confident that it will be accurate on a particular data 
source.

• Remember we have a prediction triad: in principle we 
could separately examine models and inference 
procedures.

• In fact this is too difficult: we are forced to examine 
directly the accuracy of the different available models 
on each data source and somehow decide which, if 
any, is giving accurate results.



Reliability models in practice - examples



Data set: Sys1 















Optimistic/pessimistic

•If u-plot is everywhere above the line of unit slope the 

predictions are ‘too optimistic’; if they are everywhere 

below the line, ‘too pessimistic’.

•Here JM is far too optimistic, which confirms suspicion 

from median plot; LV is slightly too pessimistic.

•This poor u-plot performance for JM probably explains 

the poor PLR performance versus LM, LV.

•The median plot, and PLR, seem to show that there is 

little to choose between the three in the early stages, but 

u-plot aggregates over the whole sequence of 

predictions.



Summary

• These models seem to perform almost as well as the 
best parametric models for most data sets.

• They seem robust: whilst the performance of the 
parametric models varies considerably from one data 
set to another, these seem fairly consistent.

• In most cases the best performing model is usually a 
parametric one.

• Since we can select the best model via analysis of 
predictive accuracy, it is still best to be eclectic in 
model choice and ‘let the data decide’.

• Some of these models are very computationally 
intensive (but who cares?!).

‘Prediction is very difficult, especially of the future’

(Niels Bohr)
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5. Experiences in Software Reliability

• Limits in software reliability

• Reliability & Availability Guidelines 

• A Case Study from the Nuclear Industry 

• How might we gain confidence in ultrahigh 

reliability? 

• The law of diminishing returns: ‘Heroic 

debugging’ does not work 

• Adams effect 

• Exercises



Limits to reliability measurement (1)   

• The dependence upon computers in safety-critical 

applications is accelerating:
- A330-340 flight control: 10-9 failures per hour stated 

requirement

- Sizewell B reactor protection: 10-4 prob of failure on 

demand

- Air traffic control: 3 seconds per annum

- Chemical plant: risks comparable to nuclear

- Robotics (e.g. surgical assistance): surprisingly modest 

requirements

- Automobiles (engine management, ABS, 4WS)

- Railway signalling and control (TGV): 10-12 prob of fail per 

hour



Limits to reliability measurement (2)   

• Can we build these to the reliability levels 

needed?

• How do we convince ourselves that the 

reliability targets have been achieved when 

software plays a critical role?

• What are the limits to the levels of reliability 

we can measure? Are these just limits to the 

current measurement techniques, or are they 

intrinsic?



http://openaccess.city.ac.uk/1251/1/CACMnov93.pdf

How much confidence should we place in a 

system that has not failed at all? (1)

•Let the random variable T represents the time 

to next failure, and let us assume that this 

program has been on test for a period t0, 

during no failures have occurred.

•T is exponential with rate 

•And mean   = -1

•Assume, in general, x failures of the program 

during the period of testing t0.



How much confidence should we place in a 

system that has not failed at all? (2)

•Bayes theorem states

p( | data)  p() p(data | ),

where the distribution p() represents the 

prior belief on occurrence of the failures, , 

and p(| data) represent the posterior belief 

after seeing the data.

•Assuming the sequence of failures as a 

Poisson process, then p(data | ) is 

proportional to x . exp(-t0).



How much confidence should we place in a 

system that has not failed at all? (3)

•The form of p() (a conjugate family of distributions, 

like Gamma) permits some homogeneity.

•The prior belief - Gamma (a, b), for some suitable 

choice of a and b.

•p( | x, t0) is represented by Gamma (a+x, b+t0).

•Under conjugacy both posterior distribution and prior 

will be a member of the same family: for example the 

expected value, E(), changes from a/b to (a+x)/(b+t0), 

so that observing a small number of failures, x, in a 

long time time t0, will cause the posterior expected value 

to be smaller than the prior.



http://openaccess.city.ac.uk/1251/1/CACMnov93.pdf

How much confidence should we place in a system that has not failed at all?

3)



How much confidence should we place in a 

system that has not failed at all?
Ignoring prior distribution ?!                  (1)

•Modelling “total ignorance” is difficult.

•To represent initial ignorance, we should take a and b as small as 

possible. 

•The posterior distribution is approximately Gamma (x, t0), with the 

approximation improving a, b  0.

•We could informally think of Gamma (x, t0) as the posterior in which the 

data “speak for themselves”.

•When x=0 the posterior distribution for the rate is proportional to -1, and 

is thus improper (i.e., it yields a total probability mass greater than 1).

•Worse, the predictive distribution for T is also improper, and is thus 

useless for prediction.



How much confidence should we place in a system that has not failed at all?

Ignoring prior distribution ?!                  (2)



How much confidence should we place in a system that has not failed at all?

What prior belief is needed to arrive at a 

posterior belief in ultra-high reliability? 

Is such belief reasonable?                   (1)

•The conclusion here is that observing a long period of 

failure-free working does not in itself allow us to conclude 

that a system is ultra-reliable. It must be admitted that the 

prior distribution here is rather unrealistic.

•Let us consider the case where the observer has genuine 

prior beliefs about .

•Example: the reliability requirement is that the median 

time to failure is 106 hours, and the trust has shown 

failure-free working for 103 hours, what prior belief would 

the observer have needed in order to conclude that the 

requirement had been met? 



How much confidence should we place in a system that has not failed at all?

What prior belief is needed to arrive at a 

posterior belief in ultra-high reliability? 

Is such belief reasonable?                     (2)

•From above, (a, b) must satisfy
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which implies, since b>0, that a>0.1003288.

•It is instructive to examine what is implied by prior beliefs in 

this solution set.



How much confidence should we place in a system that has not failed at all?

What prior belief is needed to arrive at a 

posterior belief in ultra-high reliability? 

Is such belief reasonable?                   (3)

•Consider, for example, a=0.11, b=837.2.

•Is this a “reasonable” prior belief? Not, since the prior 

probability that T>106 is 0.458.

•The observer must believe a priori that there is almost 50:50 

chance by surviving for 106 hours.

•If a = 0.50, b=332333, the prior P(T>106) is 0.499. As a increases 

this problem becomes worse.   

To believe that “this is a 106 system” after seeing only 103 hours of 

failure-free working, we must initially believe it was a 106 system. 

To end up with a very high confidence in a system, when we can see 

only a modest amount of testing, we must bring to the problem the 

relevant degree of belief.



Orders of magnitude less than …

You can argue with the details of all this, but I think you 

are struck with the ball-park order-of-magnitude 

representing by this argument:

•For the amounts of testing that are practically feasible, 

the confidence to be gained solely from such information 

is orders of magnitude less than is represented by, for 

example, 10-9 failures/hr.

•Are there other sources of information, in addition 

to testing, that could allow us to gain higher confidence?

(e.g. by allowing us to justifiably have strong prior 

beliefs)



Reliability Guidelines   

Typical ROCOF 

(Failures/Hr)

Time Between 

Failures

10-9h-1 114,000 years

10-6h-1 114 years

10-3h-1 6 weeks

10-2h-1 100 hours

10-1h-1 10 hours



Use Availability Guidelines

Acceptable Down 

Time

Availability

5 minutes/year 5 nines (0.99999)

5 minutes/month or 

1hour/year

4 nines (0.9999)

10 minutes/week or 1 

shift/year

3 nines (0.999)



Software Reliability in Safety Critical Applications: 

A Case Study from the Nuclear Industry (1)  

• Software is being widely used in various safety 
critical industries such as automobile, medical, 
petrochemical, nuclear, railways, etc. 

• The increase in software-based systems for 
safety functions requires systematic evaluation 
of software reliability. Software reliability 
estimation is still an unresolved issue and 
existing approaches have limitations and 
assumptions that are not acceptable for safety 
applications. 

http://www.arsymposium.org/india/2012/abstracts/t2s2.htm



Software Reliability in Safety Critical Applications: 

A Case Study from the Nuclear Industry (2)  

• Existing reliability estimation techniques 
require a sufficient and accurate history of 
software failures, which is not available for 
new software products. A novel idea uses 
mutation testing and software verification. The 
approach has been demonstrated through a case 
study from the nuclear industry (specifically, 
the core temperature monitoring system of a 
nuclear reactor).

http://www.arsymposium.org/india/2012/abstracts/t2s2.htm



It need to …

• Firstly it needs to be emphasised that we do 
need to express our dependability requirements 
in the language of probability.

 The sources of uncertainty we have met earlier are 
still present:

- Operational environment

- Incomplete knowledge of possible behaviour

 Informally we need to have sufficient confidence 
that the system will fail sufficiently infrequently 
(or, for a one-shot system, with sufficiently low 
probability, etc).



How might we gain confidence in 

ultrahigh reliability?   

• Direct observation of operational behaviour of the 
system (e.g. in test or simulation) is not going to give 
assurance of ultra-high reliability:
 The problem of ‘representativeness’ of input cases

 The law of diminishing returns …

• Aids to be used to obtain confidence in software 
designs:
 Past experience with similar products, or products of the 

same process

 Structural reliability modelling

 Proofs and formal methods

 Combination of different kinds of evidence

 Validation by stepwise improvement of a product



‘Heroic debugging’ does not work   

Later improvements in the MTTF require proportionally 

longer testing.



Adams effect 

• Field data on many copies 
of a system undergoing 
failures as a result of both 
software and hardware 
design faults; points are 
‘current rate’ estimates 
from LV, curve fitted by 
eye.

• Again a strong law of 
diminishing returns

• To get very low rate will 
take extremely long time 
even if achievable (what is 
asymptote?)

• Adams effect: rates of faults 
differ by order of 
magnitude; system 
eventually is depleted of the 
‘large’ ones; unreliability 
then comes from many 
small faults; fixes have little 
effect upon unreliability. 
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6. Software Reliability Engineering Practice

• Software Reliability Tools

• SMERFS Main Features 

• SREPT Main Features

• CASRE Main Features 

• Frestimate Main Features

• CASRE in large

• Frestimate in large

• Examples

• Conclusions



Software Reliability Tools

• Statistical Modelling and Estimation of Reliability 
Functions for Software (SMERFS) [William Farr of 
Naval Surface Warfare Center]

• SREPT (Software Reliability Estimation and 
Prediction Tool) [Center for Advanced Computing 
and Communication Department of Electrical and 
Computer Engineering Duke University]

• Computer-Aided Software Reliability Estimation Tool 
(CASRE) [Allen Nikora, JPL & Michael Lyu, 
Chinese University of Hong Kong]

• Frestimate [SoftRel, Ann Marie Neufelder, 
http://www.softrel.com/prod01.htm

• etc.

http://www.softrel.com/prod01.htm


SMERFS Main Features  

• Multiple Models (12)

• Model Application Scheme:  Single Execution

• Data Format:  Failure-Counts and Time-Between 
Failures

• On-line Model Description Manual

• Two parameter Estimation Methods

• Least Square Method

• Maximum Likelihood Method

• Goodness-of-fit Criteria:  Chi-Square Test, KS Test

• Model Applicability - Prequential Likelihood, Bias, 
Bias Trend, Model Noise

• Simple Plots 



SREPT



CASRE Main Features   

• Multiple Models (12)

• Model Application Scheme:  Multiple Iterations

• Goodness-of-Fit Criteria - Chi-Square Test, KS Test

• Multiple Evaluation Criteria - Prequential Likelihood, 

Bias, Bias Trend, Model Noise

• Conversions between Failure-Counts Data and Time-

Between-Failures Data

• Menu-Driven, High-Resolution Graphical User 

Interface

• Capability to Make Linear Combination Models



CASRE High-Level Architecture



CASRE Screen Shot



CASRE – Running average Trend Test



CASRE – Laplace Test



CASRE – Select and Run Models



CASRE – Display modelling results



CASRE – Ranking Models



Frestimate Main Features

• Frestimate is a software reliability tool 
providing basic software prediction 
capabilities.



FRESTIMATE - topics

• Frestimate – prediction/estimation models

• Frestimate versus CASRE/SMERFS



Frestimate: prediction models (1a)

• Prediction models - regardless of whether they are for 

software reliability or any other application - are 

developed by collecting trained data and observing 

relationships in that features and some outcome. In the 

case of software reliability the outcome is delivered 

defects normalized by code size.

• The features vary from model to model and are generally 

related to development practices. Some models have 

only one feature. Some models have many features. The 

model is the mathematical expression that determines 

some outcome given some set of features.



Frestimate: prediction models (1b)

• Predictors are used early in the development 

lifecycle to:

- Determine whether the current 

capabilities/development practices are suitable for 

meeting a system reliability objective

- Select the development practices that would allow 

the system reliability objective to be met

- Determine whether vendor supplied software will 

meet a system objective



Frestimate: prediction models (1c)

• Predictors are used early in the development 

lifecycle to:

- Determine suitable quality and reliability objectives 

for the software

- Determine staffing requirements for maintenance 

and testing

- Predict the inherent number of defects in the 

software at the start and end of testing



Frestimate: estimation (1)

• Estimation models - are models that project 
the future based on what has happened in 
the immediate past - on this project.

• Estimators do not use trained data like 
predictors, they use data collecting only 
from the project in which we are interested 
in measuring. 



Frestimate: estimation (2)

• Estimators have a variety of purposes 
including:

- Projecting how many more hours of 
testing are needed to reach some 
reliability objective

- Projecting how many more defects 
must be detected and then fixed to 
reach some reliability objective.

- Validating a reliability prediction



Frestimate / trained data

• Because the actual fielded defect density is 
known for the sample, it is called trained 
data.

• By exploring relationships between the 
development practices and observed defect 
density in trained data, we can develop 
mathematical models to predict defect density 
for organizations in which  the development 
practices are known but the defect density is 
not known.



Rome Laboratory Model (1)

• The Air Force's Rome Laboratory developed 
predictions of fault density that could be 
transformed into other reliability measures such 
as failure rates.



Rome Laboratory Model (2)

A number of factors were selected: 

A - Application type (e.g., real-time control systems, scientific, 
information management), 

D - Development environment (methodology, tools, languages), 

Requirements and design representation metrics (AM - anomaly 
management, ST - traceability, QR - incorporation of quality 
review results), 

Software implementation metrics (SL - language type [assembly, 
high-order, object-oriented, etc.), SS - program size, SM -
modularity, SU - extent of reuse, SX - complexity, SR -
incorporation of standards review results into the software).

The initial fault density prediction is given by the product 

0 = A*D*(AM*ST*QR)*(SL*SS*SM*SU*SX*SR).



Rome Laboratory Model (3)

A prediction of the initial failure rate is made as 

[Musa] 0=F*K*0*number of lines of source 

code = F*K*W0, where:

 W0 is called also ‘The number of inherent faults’

 F is the linear execution frequency of the program

 K is the fault expose ratio (1.4E-7<=K<=10.6E-7). 

The fault exposure ratio, K, is an important factor 

that controls the per-fault hazard rate, and hence, 

the effectiveness of the testing of software. 



Rome Laboratory Model (4)

The initial failure rate can be expressed also by 
letting F=R/I, where :

• R is the average instruction rate and 

• I is the number of object instructions in the 
program,

and then further rewriting I as Is*Qx, where 

• Is is the number of source instructions and

• Qx is the code expansion ratio (the ratio of 
machine instructions to source instructions - an 
average value of 4 is indicated).



Rome Laboratory Model @Frestimate



FRESTIMATE ‘against’ CASRE and 

SMERFS
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7. Lessons learned

• The increase in software-based systems for 
safety functions requires systematic evaluation 
of software reliability. 

• Software reliability estimation is still an 
unresolved issue and existing approaches have 
limitations and assumptions that are not 
acceptable for safety applications.

• Direct observation of operational behaviour of 
the system (e.g. in test or simulation) is not 
going to give assurance of ultra-high reliability



Tentative summary of the story so far:  

• Lots of models but no single “best buy”

• The bad news: some models almost universally bad, 

all models occasionally bad!

• The good news: some models OK sometimes

• Cannot select a model a priori and trust it to work 

(even if it worked well on a previous project, and you 

think the current project is ‘similar’)

• Be eclectic: try many models on your data and check 

for accuracy of predictions

It is USUALLY possible to predict software reliability with 

REASONABLE accuracy and have SOME CONFIDENCE you have done so. 



General conclusions

• The bad news …
- No perfect model

- No way of selecting the best models a priori

- All models sometimes inaccurate

• … the good news …
- Can analyse predictive accuracy dynamically

- Recalibration often improve accuracy

- Can usually obtain accurate reliability estimates and know 
they are accurate

• … and the warning … 
- These techniques only work for modest reliability levels

- They are essential no way assuring that ultrahigh reliability 
has been achieved 



Why Such Inactivity?

There are a number of reasons for this inactivity:

• Lack of awareness/training

• Disillusionment following “false starts” with immature 
measures and models. “All Models are Wrong - Some are 
Useful” (George E. P. Box)

• Too busy grappling with the current crisis to see long term 



Software Reliability Course - Agenda

1. Motivation

2. Introduction to Software Engineering

3. Measuring Software Reliability

4. Software Reliability Techniques and Tools

5. Experiences in Software Reliability

6. Software Reliability Engineering Practice

7. Lessons Learned

8. Background Literature



References

http://www.cse.cuhk.edu.hk/~lyu/book/reliability/



































































































DOF – Degrees Of Freedom
In statistics, the number of degrees of freedom is the number of 

values in the final calculation of a statistic that are free to vary.

A data set contains a number of observations, say, n. They constitute n

individual pieces of information. These pieces of information can be 

used either to estimate parameters or variability. In general, each 

item being estimated costs one degree of freedom. The remaining 

degrees of freedom are used to estimate variability.

A single sample: There are n observations. There's one parameter (the 

mean) that needs to be estimated. That leaves n-1 degrees of freedom 

for estimating variability.

Two samples: There are n1+n2 observations. There are two means to 

be estimated. That leaves n1+n2-2 degrees of freedom for estimating 

variability. 

http://en.wikipedia.org/wiki/Degrees_of_freedom_%28statistics%29



EOC – End Of Course!

http://www2.imm.dtu.dk/~popen/pec/pec.html/
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